{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"tags": [
"remove-input"
]
},
"outputs": [],
"source": [
"from datascience import *\n",
"path_data = '../../../assets/data/'\n",
"import matplotlib\n",
"matplotlib.use('Agg')\n",
"%matplotlib inline\n",
"import matplotlib.pyplot as plots\n",
"plots.style.use('fivethirtyeight')\n",
"import numpy as np"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Empirical Distributions\n",
"\n",
"In data science, the word \"empirical\" means \"observed\". Empirical distributions are distributions of observed data, such as data in random samples.\n",
"\n",
"In this section we will generate data and see what the empirical distribution looks like. \n",
"\n",
"Our setting is a simple experiment: rolling a die multiple times and keeping track of which face appears. The table `die` contains the numbers of spots on the faces of a die. All the numbers appear exactly once, as we are assuming that the die is fair."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
" \n",
"
\n",
"
Face
\n",
"
\n",
" \n",
" \n",
"
\n",
"
1
\n",
"
\n",
"
\n",
"
2
\n",
"
\n",
"
\n",
"
3
\n",
"
\n",
"
\n",
"
4
\n",
"
\n",
"
\n",
"
5
\n",
"
\n",
"
\n",
"
6
\n",
"
\n",
" \n",
"
"
],
"text/plain": [
"Face\n",
"1\n",
"2\n",
"3\n",
"4\n",
"5\n",
"6"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"die = Table().with_column('Face', np.arange(1, 7, 1))\n",
"die"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## A Probability Distribution\n",
"\n",
"The histogram below helps us visualize the fact that every face appears with probability 1/6. We say that the histogram shows the *distribution* of probabilities over all the possible faces. Since all the bars represent the same percent chance, the distribution is called *uniform on the integers 1 through 6.*"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEhCAYAAAAAvcV/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de1RU9eI28GcDIgLaIBLewAxGBAMvkFKk2W0sPYh5CcFc/jINJSsrTTh5yUuOptmbihw65goLPaJSGZIdPWkahplhUmZiCEgKKYg2o4Aw8/7RclYTtwH2nj3Dfj5rsZb7/nxZLZ72zL4IlZWVRhARESmEg9wBiIiIrInFR0REisLiIyIiRWHxERGRorD4iIhIUVh8RESkKCw+IiJSFFmLLzs7G5MnT0ZgYCBUKhXS0tLMlqtUqgZ/5s2b1+g+jxw50uA2Z8+elXo4RERkB5zkPLher0dQUBBiYmIwa9asest/+eUXs+nc3FxMnjwZ48aNa3bfOTk58PDwME1369at7YGJiMjuyVp8Go0GGo0GABAfH19vube3t9l0VlYW/P398cADDzS7by8vL3h6eooTlIiI2g27+Y5Pp9MhIyMD06ZNs2j9kSNHIiAgAGPHjsXhw4clTkdERPZC1jO+lti1axeqq6sRExPT5Hrdu3fHunXrMGTIENTU1GDHjh2IiopCZmYmIiIirJSWiIhsld0UX2pqKsaMGdPsd3VqtRpqtdo0PXToUBQXF2PDhg0sPiIiso+POk+dOoXc3FyLP+b8u9DQUBQUFIicSj75+flyR5Acx9g+cIztQ3sbo10UX2pqKnx9fTFy5MhWbZ+Xl1fvQhkiIlImWT/q1Ol0pjMxg8GAkpISnDp1Ch4eHvDx8QEA3LhxAzt37sSLL74IQRDq7SMuLg4AkJKSAgDYtGkTfH19ERgYiJqaGqSnp2Pv3r3YunWrlUZFRES2TNbiy83NRWRkpGlaq9VCq9UiJiYGycnJAICMjAzo9XpMmTKlwX2UlJSYTd+6dQuLFi3CpUuX4OLigsDAQKSnp5tumyAiImUT+AZ2+5Ofn292AU97xDG2Dxxj+9DexmgX3/ERERGJhcVHRESKwuIjIiJFYfEREZGi8OIWEZRdvoorV69b7Xg6vQ7ubu5WOx4AuLp0xI2qaqsdj2OUBscoPo5RGt08usDby6P5FVvBbh5ZZsuuXL2OZevTml9RJHq9Hm5ublY7HgDMnf4k/t+Wj612PI5RGhyj+DhGaSx+cYpkxcePOomISFFYfEREpCgsPiIiUhQWHxERKQqLj4iIFIXFR0REisLiIyIiRWHxERGRorD4iIhIUVh8RESkKCw+IiJSFBYfEREpCouPiIgUhcVHRESKwuIjIiJFYfEREZGisPiIiEhR7K74srOzMXnyZAQGBkKlUiEtzfzN57Nnz4ZKpTL7efTRR2VKS0REtsZJ7gAtpdfrERQUhJiYGMyaNavBdUaOHImUlBTTtLOzs7XiERGRjbO74tNoNNBoNACA+Pj4Btfp2LEjvL29rRmLiIjshN0VnyW++eYb+Pv744477kBERAQWLVoELy+vJrfJz89v9fF0+hro9fpWb98a1j5ebV0txygBjlF8HKM0rH08nV7Xpr/LarW60WXtrvgeffRRREZGok+fPiguLsaKFSswduxYHDp0CB07dmx0u6Z+Sc356WwR3NzcWr19S+n1eqseDwCcHJ04RpFxjNLgGMUnxxjd3dyhVveRZN/trvgmTJhg+veAAQMwaNAgBAcH44svvsDYsWNlTEZERLbA7q7qbKkePXqgZ8+eKCgokDsKERHZgHZffOXl5bh06RIvdiEiIgB2+FGnTqcznb0ZDAaUlJTg1KlT8PDwgIeHB1atWoWxY8fC29sbxcXFWLZsGby8vPCPf/xD5uRERGQL7O6MLzc3FyNGjMCIESNw8+ZNaLVajBgxAitXroSjoyNOnz6N2NhYhIWFYfbs2fD398d///tfdO7cWe7oRERkA+zujG/48OGorKxsdHlGRoYV0xARkb2xuzM+IiKitmDxERGRorD4iIhIUVh8RESkKCw+IiJSFBYfEREpCouPiIgUhcVHRESKwuIjIiJFYfEREZGiWFx82dnZuHLlSqPLy8vLkZ2dLUooIiIiqVhcfJGRkTh48GCjy7/66itERkaKEoqIiEgqFhef0WhscnlNTQ0cHPjJKRER2bYm385w/fp1XLt2zTRdUVGBCxcu1FuvsrISu3fvRo8ePcRPSEREJKImi2/Tpk146623AACCICAxMRGJiYkNrms0GrFo0SLxExIREYmoyeIbOXIkXFxcYDQasWzZMowfPx7BwcFm6wiCAFdXVwwePBhhYWGShiUiImqrJosvPDwc4eHhAIDq6mpERkZiwIABVglGREQkBYvfwJ6QkCBlDiIiIqtotPi2b98OAJg8eTIEQTBNNycmJkacZERERBJotPji4+MhCAImTJgAZ2dnxMfHN7szQRBYfEREZNMaLb4ffvgBAODs7Gw2TUREZM8aLT5fX98mp4mIiOyRrI9ayc7OxuTJkxEYGAiVSoW0tDTTslu3bmHJkiW4//770bNnTwQEBGDGjBkN3kD/V0eOHIFKpar3c/bsWamHQ0REdsDiqzoB4NChQ0hNTUVhYSGuXr1a7zFmgiDg5MmTFu9Pr9cjKCgIMTExmDVrltmyGzdu4IcffsC8efMQHByM69evY+HChZg4cSKys7Ph5NR09JycHHh4eJimu3XrZnEuIiJqvywuvuTkZLz++uvo1q0bwsLCEBgY2OaDazQaaDQaAKh38cwdd9yBTz75xGzeO++8g/DwcPzyyy/N3k/o5eUFT0/PNmckIqL2xeLiS0pKQkREBHbv3m264MXa/vjjDwCASqVqdt2RI0eipqYGAQEBmDdvHkaMGCF1PCIisgMWF195eTleffVV2UqvpqYGCxcuxOOPP45evXo1ul737t2xbt06DBkyBDU1NdixYweioqKQmZmJiIiIRrfLz89vdTadvgZ6vb7V27eGtY9XW1fLMUqAYxQfxygNax9Pp9e16e+yWq1udJnFxTdo0CAUFxe3OkRb1NbW4rnnnsO1a9eavZFerVabDXjo0KEoLi7Ghg0bmiy+pn5JzfnpbBHc3NxavX1L6fV6qx4PAJwcnThGkXGM0uAYxSfHGN3d3KFW95Fk3xZf1fnmm29i27ZtOHz4sCRBGlNbW4tnn30WP/30Ez799FN07dq1xfsIDQ1FQUGBBOmIiMjeWHzGp9Vq0aVLF4wbNw5+fn7w8fGBo6Oj2TqCICA9PV20cLdu3cL06dPx888/IzMzE97e3q3aT15eXqu3JSKi9sXi4jtz5gwEQUDv3r1RXV2Nc+fO1VtHEIQWHVyn05nOxAwGA0pKSnDq1Cl4eHigR48emDZtGnJzc7F9+3YIgoCysjIAQJcuXdCpUycAQFxcHAAgJSUFwJ/vEPT19UVgYCBqamqQnp6OvXv3YuvWrS3KRkRE7ZPFxZeXlyf6wXNzcxEZGWma1mq10Gq1iImJQUJCArKysgD8eYXmXyUlJWHKlCkAgJKSErNlt27dwqJFi3Dp0iW4uLggMDAQ6enpptsmiIhI2Vp0A7vYhg8fjsrKykaXN7Xstr1795pNv/TSS3jppZfanI2IiNoni4uvuUeF3ebj49PqMERERFKzuPhCQkIs+g6voqKiTYGIiIikZHHxbdy4sV7x1dXVoaioCP/5z39w5513YsaMGaIHJCIiEpPFxXf7YpKGzJ07Fw8//DB0Op0ooYiIiKQiymuJ3N3dMWXKFGzatEmM3REREUlGtPfxdejQAZcuXRJrd0RERJIQpfjy8vLwr3/9CwEBAWLsjoiISDJtvqrz2rVruH79Otzd3ZGUlCRqOCIiIrFZXHwRERH1ik8QBKhUKtx9992YMGGCRe/JIyIiklOL3sBORERk70S7uIWIiMgesPiIiEhRWHxERKQoLD4iIlIUFh8RESmKRcVXVVWF1atX48svv5Q6DxERkaQsKj4XFxe888479d52TkREZG8s/qgzODgYBQUFUmYhIiKSnMXFt3jxYmzduhVffPGFlHmIiIgkZfGTW9avXw+VSoWYmBj07NkTd911Fzp16mS2jiAISE9PFz0kERGRWCwuvjNnzkAQBPTu3RsAUFxcXG+dhh5iTUREZEssLr68vDwpcxAREVmF3d3Hl52djcmTJyMwMBAqlQppaWlmy41GI7RaLfr374/u3btjzJgx+Pnnn2VKS0REtqZFxVdXV4f09HTMmTMH0dHR+PHHHwEAlZWV+Pjjj1FaWipJyL/S6/UICgrCqlWr6n3HCADvvvsukpKSTPcdenl54cknn8Qff/wheTYiIrJ9FhfftWvXoNFoEBcXh08//RT79+9HeXk5AKBz5854/fXX8d5770kW9DaNRoPFixcjKioKDg7m8Y1GI5KTkzF37lxERUUhKCgIycnJ0Ol02LVrl+TZiIjI9llcfEuXLsWZM2ewc+dOnDx5Ekaj0bTM0dERkZGR2L9/vyQhLVVUVISysjI8/PDDpnmdOnXC/fffj2PHjsmYjIiIbIXFF7fs3bsXzz33HB599FFUVFTUW+7n54cdO3aIGq6lysrKAABeXl5m8728vHDp0qUmt83Pz2/1cXX6Guj1+lZv3xrWPl5tXS3HKAGOUXwcozSsfTydXtemv8tqtbrRZRYXX2VlJfr27dvocqPRiJqampYlk8jfb6swGo3N3mrR1C+pOT+dLYKbm1urt28pvV5v1eMBgJOjE8coMo5RGhyj+OQYo7ubO9TqPpLs2+KPOn19fXH69OlGl2dnZ8Pf31+UUK3l7e0NAPj999/N5l+5cqXeWSARESmTxcU3adIkbN26FdnZ2aZ5t8+iUlJSkJmZidjYWPETtkCfPn3g7e2NgwcPmuZVVVXhm2++wbBhw2RMRkREtsLijzpffvllfPfddxg7diz8/f0hCAISEhJQUVGBsrIyjBkzBnFxcVJmBQDodDrTw7INBgNKSkpw6tQpeHh4wMfHB7Nnz8bbb78NtVoNf39/rF27Fm5ubpg4caLk2YiIyPZZXHwdOnRAeno6du7ciU8++QSCIKC2thYDBw7E+PHj8dRTT1nlkWW5ubmIjIw0TWu1Wmi1WsTExCA5ORkvvfQSbt68ifnz56OyshKhoaHIyMhA586dJc9GRES2z+Liu23SpEmYNGmSFFksMnz4cFRWVja6XBAEJCYmIjEx0YqpiIjIXrS4+ADgxx9/xIULFwAAPj4+GDBgAB9QTUREdqFFxbd7924sWbIEFy9eNN3ALggCevbsiSVLlsh6JkhERGQJi4svLS0Nc+bMgVqtxtKlS+Hv7w+j0Yhff/0VW7duRVxcHGpqajBlyhQp8xIREbWJxcW3bt06hIaGIjMzEy4uLmbLZs6cidGjR2PdunUsPiIismkW38f322+/YdKkSfVKDwBcXFwQHR2NixcvihqOiIhIbBYXX//+/Zt83uXFixcREBAgSigiIiKpWFx8y5YtQ2pqKj7++ON6y3bv3o2tW7di+fLlooYjIiISm8Xf8W3YsAGenp549tlnkZCQgL59+0IQBBQUFODy5cvw8/PD+vXrsX79etM2giAgPT1dkuBEREStYXHxnTlzBoIgoHfv3gBg+j6vY8eO6N27N6qrq/HLL7+YbcN7+4iIyNZYXHx5eXlS5iAiIrIKi7/jIyIiag9YfEREpCgsPiIiUhQWHxERKQqLj4iIFIXFR0REimJx8Q0cOBBZWVmNLt+3bx8GDhwoSigiIiKpWFx8xcXF0Ov1jS7X6/Wml9MSERHZqhZ91NnUk1jOnTuHzp07tzkQERGRlJp8csu2bduwfft20/TatWuRmppab73KykqcPn0ao0aNEj8hERGRiJosPr1ej7KyMtP0tWvXYDAYzNYRBAGurq6YNm0aEhISpElJREQkkiaLb+bMmZg5cyYAICQkBKtWrcLo0aOtEoyIiEgKFj+k+tSpU1LmICIisgqLi++2P/74AyUlJbh69SqMRmO95REREaIEA4Dg4OAGrxTVaDQNvuevqKiowVsqdu3ahUcffVS0XEREZL8sLr6rV69iwYIF+Pjjj1FXV1dvudFohCAIqKioEC3cwYMHzY5VWlqKkSNHYty4cU1ut3v3btxzzz2maQ8PD9EyERGRfbO4+F5++WVkZmZi5syZiIiIgEqlkjIXAKBbt25m0x9++CE6d+7cbPF17doV3t7eUkYjIiI7ZXHxHThwAHFxcXjzzTelzNMoo9GIDz/8ENHR0XB1dW1y3alTp6Kqqgp+fn6Ij49HVFRUs/vPz89vdTadvqbJm/ulYO3j1dbVcowS4BjFxzFKw9rH0+l1bfq7rFarG11mcfE5OzvDz8+v1SHa6uDBgygqKsLUqVMbXcfd3R3Lly9HeHg4nJyckJWVhWeeeQbJycmIjo5ucv9N/ZKa89PZIri5ubV6+5bS6/VWPR4AODk6cYwi4xilwTGKT44xuru5Q63uI8m+LS6+qKgo7N+/H9OnT5ckSHNSU1MxZMgQhISENLqOp6cnXnjhBdP04MGDUVFRgXfffbfZ4iMiImWw+JFlL7zwAkpLSzFr1iwcP34cpaWluHz5cr0fKVy+fBlZWVmYNm1ai7cNDQ1FQUGBBKmIiMgeWXzGFxoaCkEQcPLkyQZvJbhNzKs6b9u2bRs6duyI8ePHt3jbvLw8XuhCREQmFhffa6+91uRDqqViNBqxdetWjB8/vt5DsJcuXYoTJ05gz549AP4syA4dOiAkJAQODg7Yt28fNm/ejDfeeMPquYmIyDZZXHyJiYlS5mjUkSNH8Ouvv+K9996rt6y0tBTnz583m7d27VpcuHABjo6O8PPzw8aNG/n9HhERmbT4yS0AUFdXh2vXrqFLly5wcmrVLiw2YsQIVFZWNrgsOTnZbDo2NhaxsbGS5iEiIvvWovfxff/99xg3bhx69uwJf39/ZGdnAwDKy8vx1FNP4auvvpIkJBERkVgsLr5vv/0Wo0ePxvnz5zF58mSz53R6enpCp9Phww8/lCQkERGRWCwuvuXLl8PPzw/Hjh3D4sWL6y0fPnw4vvvuO1HDERERic3i4vv+++/x9NNPw8XFpcGrO3v16mX20loiIiJbZHHxOTg4wMGh8dXLysrQqVMnUUIRERFJxeLiGzRoEPbt29fgspqaGuzcuRNDhw4VLRgREZEULC6+V155BYcPH8acOXOQl5cH4M/76A4cOICxY8fi/PnzePXVVyULSkREJAaLb8J76KGHkJKSgvnz52Pbtm0AgNmzZ8NoNOKOO+7A5s2bce+990oWlIiISAwtuvt84sSJGD16NA4ePIhff/0VBoMBffv2xSOPPAJ3d3epMhIREYmmxY9dcXV1xZgxY6TIQkREJDmLv+PLysrC/PnzG10+f/78Ri9+ISIishUWF9+GDRtw48aNRpdXVVXh3XffFSUUERGRVCwuvtOnT2PQoEGNLh84cCDOnDkjSigiIiKpWFx8tbW1uHnzZqPLb968ierqalFCERERScXi4gsKCsKePXtgMBjqLTMYDNizZw/69+8vajgiIiKxWVx8s2bNwokTJxATE4OTJ0+iuroa1dXVOHnyJGJjY3HixAnExcVJmZWIiKjNLL6dYcKECTh//jy0Wi32798PABAEAUajEYIgYMGCBXzTORER2bwW3cc3b948TJw4EZ999hkKCwthNBrRt29fREZG4q677pIoIhERkXgsKr6bN2/iqaeeQnR0NJ5++mm88MILUuciIiKShEXf8XXq1Ak//PAD6urqpM5DREQkKYsvbnnggQdw9OhRKbMQERFJzuLiW716Nb7//nssWrQIhYWFDd7WQEREZOssvrjl3nvvhdFoRFJSEpKSkuDg4IAOHTqYrSMIAi5evCh6yJbSarVYvXq12bw777wTZ8+elSkRERHZCouL78knn4QgCFJmEZVarUZmZqZp2tHRUcY0RERkKywuvuTkZClziM7JyQne3t5yxyAiIhtj8Xd89qawsBCBgYEICQnB9OnTUVhYKHckIiKyAS26gb24uBhr167F4cOHUV5eju3bt+OBBx5AeXk5Vq5cialTpzb5BgdrCQsLw6ZNm6BWq3HlyhWsWbMGGo0GOTk56Nq1a4Pb5Ofnt/p4On0N9Hp9q7dvDWsfr7aulmOUAMcoPo5RGtY+nk6va9PfZbVa3egyi4vvl19+weOPPw6DwYCwsDAUFxeb7uvz9PTE8ePHUV1djY0bN7Y6qFgee+wxs+mwsDAMGjQI27Ztw5w5cxrcpqlfUnN+OlsENze3Vm/fUnq93qrHAwAnRyeOUWQcozQ4RvHJMUZ3N3eo1X0k2bfFxbdkyRJ07twZBw4cgKOjI/z9/c2WazQafPLJJ6IHFIO7uzv69++PgoICuaMQEZHMLP6O7+jRo5gxYwbuvPPOBq/u9PHxwaVLl0QNJ5aqqirk5+fzYhciIrL8jK+2trbJU92rV6/azC0DCxcuxOOPP47evXubvuO7ceMGYmJi5I5GREQya9GLaI8cOdLgMqPRiM8++8wmLmwBgIsXL2LGjBm49957MXXqVDg7O2P//v3w9fWVOxoREcnM4jO+2bNnY8aMGXjrrbcwfvx4AH++ef3s2bPQarXIzc3Fjh07JAvaElu2bJE7AhER2agWvYj2woULePPNN7Fq1SrTPODPp6KsWLGi3tWUREREtqZF9/HNnTsXEydOxJ49e1BQUACDwYC+ffti7Nix6NNHmstOiYiIxNRs8VVXVyMrKwuFhYXo2rUrRo0ahfj4eGtkIyIiEl2TxVdWVobRo0fj/PnzMBqNAAA3Nzfs2LEDERERVglIREQkpiav6lyxYgUKCwsRHx+PHTt2QKvVomPHjnjttdeslY+IiEhUTZ7xffnll4iJicGKFStM8+68807MmDEDv/32G3r16iV5QCIiIjE1ecZXVlaGYcOGmc0LDw+H0WhESUmJpMGIiIik0GTx1dXVwcXFxWze7emqqirpUhEREUmk2as6CwsLceLECdP09evXAfz5Gh93d/d664eGhooYj4iISFzNFp9Wq4VWq603/+8XuBiNRgiCgIqKCvHSERERiazJ4ktKSrJWDiIiIqtosvhiY2OtlYOIiMgqLH47AxERUXvA4iMiIkVh8RERkaKw+IiISFFYfEREpCgsPiIiUhQWHxERKQqLj4iIFIXFR0REisLiIyIiRbHp4lu3bh0eeugh+Pj4wM/PD9HR0Th9+nST2xQVFUGlUtX7OXDggJVSExGRLWv27Qxy+vrrr/Hss89iyJAhMBqNWLlyJcaNG4djx47Bw8OjyW13796Ne+65xzTd3PpERKQMNl18GRkZZtMpKSnw9fVFTk4OnnjiiSa37dq1K7y9vaWMR0REdsimP+r8O51OB4PBAJVK1ey6U6dOhb+/P0aNGoVPP/3UCumIiMge2PQZ398lJCQgODgYQ4cObXQdd3d3LF++HOHh4XByckJWVhaeeeYZJCcnIzo6utHt8vPzW51Lp6+BXq9v9fatYe3j1dbVcowS4BjFxzFKw9rH0+l1bfq7rFarG11mN8X3z3/+Ezk5Odi3bx8cHR0bXc/T0xMvvPCCaXrw4MGoqKjAu+++22TxNfVLas5PZ4vg5ubW6u1bSq/XW/V4AODk6MQxioxjlAbHKD45xuju5g61uo8k+7aLjzoTExOxe/du7NmzB3fddVeLtw8NDUVBQYH4wYiIyO7Y/BnfggULkJGRgczMTPTr169V+8jLy+OFLkREBMDGi2/evHnYsWMHPvroI6hUKpSVlQEA3Nzc4O7uDgBYunQpTpw4gT179gAAtm3bhg4dOiAkJAQODg7Yt28fNm/ejDfeeEOuYRARkQ2x6eLbvHkzACAqKsps/oIFC5CYmAgAKC0txfnz582Wr127FhcuXICjoyP8/PywcePGJr/fIyIi5bDp4qusrGx2neTkZLPp2NhYxMbGShWJiIjsnF1c3EJERCQWFh8RESkKi4+IiBSFxUdERIrC4iMiIkVh8RERkaKw+IiISFFYfEREpCgsPiIiUhQWHxERKQqLj4iIFIXFR0REisLiIyIiRWHxERGRorD4iIhIUVh8RESkKCw+IiJSFBYfEREpCouPiIgUhcVHRESKwuIjIiJFYfEREZGitNvi27x5M0JCQuDt7Y0HH3wQR48elTsSERHZgHZZfBkZGUhISMCrr76Kw4cPY+jQoZg0aRIuXLggdzQiIpJZuyy+pKQkxMbGYtq0aQgICMCaNWvg7e2NLVu2yB2NiIhkJlRWVhrlDiGmmpoa9OjRA++//z7GjRtnmj9v3jycPn0aWVlZMqYjIiK5tbszvvLyctTV1cHLy8tsvpeXF37//XeZUhERka1od8V3myAIZtNGo7HePCIiUp52V3yenp5wdHSsd3Z35cqVemeBRESkPO2u+JydnTFo0CAcPHjQbP7BgwcxbNgwmVIREZGtcJI7gBSef/55xMXFITQ0FMOGDcOWLVtQWlqKZ555Ru5oREQks3Z3xgcA48ePh1arxZo1azB8+HDk5OQgPT0dvr6+ckdrk+zsbEyePBmBgYFQqVRIS0uTO5Ko1q1bh4ceegg+Pj7w8/NDdHQ0Tp8+LXcsUf373//G/fffDx8fH/j4+OCxxx7DF198IXcsybz99ttQqVSYP3++3FFEpdVqoVKpzH769esndyzRlZaWYtasWfDz84O3tzeGDRuGr7/+Wu5YbdYuz/gAYMaMGZgxY4bcMUSl1+sRFBSEmJgYzJo1S+44ovv666/x7LPPYsiQITAajVi5ciXGjRuHY8eOwcPDQ+54oujZsyeWLl0KPz8/GAwGbN++HVOmTMGhQ4dwzz33yB1PVMePH0dqaioGDBggdxRJqNVqZGZmmqYdHR1lTCO+yspKjBo1CuHh4UhPT4enpyeKioraxbUS7bb42iONRgONRgMAiI+PlzmN+DIyMsymU1JS4Ovri5ycHDzxxBMypRLXmDFjzKYXLVqE999/H8ePH29XxXft2jXMnDkTGzZswFtvvSV3HEk4OTnB29tb7hiSWb9+Pbp3746UlBTTvJywGUYAAAbrSURBVLvuuku+QCJqlx91Uvug0+lgMBigUqnkjiKJuro67N69G3q9HkOHDpU7jqjmzp2LqKgoPPjgg3JHkUxhYSECAwMREhKC6dOno7CwUO5Iotq7dy9CQ0PxzDPPwN/fHw888ADee+89GI32/8wTnvGRzUpISEBwcHC7K4WffvoJGo0GVVVVcHNzw0cffdSuPg5MTU1FQUGB2ZlCexMWFoZNmzZBrVbjypUrWLNmDTQaDXJyctC1a1e544misLAQ77//PuLj4zF37lzk5eVhwYIFAIDnnntO5nRtw+Ijm/TPf/4TOTk52LdvX7v77kStVuPIkSO4du0a9uzZg9mzZyMzMxNBQUFyR2uz/Px8LFu2DJ9//jmcnZ3ljiOZxx57zGw6LCwMgwYNwrZt2zBnzhyZUonLYDBg8ODBWLJkCQBg4MCBKCgowObNm1l8RGJLTExERkYGPvvss3bzncJfOTs74+677wYADB48GN9//z02bdqEjRs3ypys7b799luUl5fjvvvuM82rq6vD0aNHsWXLFly8eBEdO3aUMaE03N3d0b9/fxQUFMgdRTTe3t4ICAgwm9evXz+UlJTIlEg8LD6yKQsWLEBGRgYyMzPb5eXhDTEYDKipqZE7hijGjBmDwYMHm817/vnn4efnh1deeaXdngVWVVUhPz8fw4cPlzuKaMLDw3Hu3DmzeefOnYOPj49MicTD4rMjOp3O9H+UBoMBJSUlOHXqFDw8PNrFf4zz5s3Djh078NFHH0GlUqGsrAwA4ObmBnd3d5nTieONN96ARqNBr169oNPpsGvXLnz99ddIT0+XO5oobt/T9leurq7w8PBoFx/l3rZw4UI8/vjj6N27t+k7vhs3biAmJkbuaKKJj4+HRqPB2rVrMX78eJw6dQrvvfceFi1aJHe0Nmt3ryVqz44cOYLIyMh682NiYpCcnCxDInE1dvXmggULkJiYaOU00pg9ezaOHDmC33//HV26dMGAAQPw4osv4pFHHpE7mmTGjBmDoKAgrFmzRu4oopk+fTqOHj2K8vJydOvWDWFhYXj99dfRv39/uaOJ6osvvsCyZctw7tw59O7dGzNnzkRcXJzdP/CfxUdERIrC+/iIiEhRWHxERKQoLD4iIlIUFh8RESkKi4+IiBSFxUdERIrC4iOyE2lpafVefnr759ChQ3LHI7IbfHILkZ1JTU1Fz549zeb9/ZmKRNQ4Fh+RnQkODjY95JqIWo4fdRK1A19++SUmTZqEgIAA9OjRA/fddx82bNiAurq6euumpqZixIgR6N69O/r06YPRo0fj2LFjpuU3btzAkiVLEBISAi8vL4SEhGDt2rUwGAzWHBKRZHjGR2Rn6urqUFtba5oWBAGFhYUYMWIEnnvuOXTs2BEnT57E6tWrUV5ejjfeeMO07sKFC7Fx40ZMnToViYmJcHBwwPHjx1FSUoJhw4ahtrYWEyZMwJkzZzB//nwMGDAAx48fx5o1a3D16lW8+eabMoyYSFwsPiI7c++995pNh4eHY9++faZpo9GI+++/HzU1NdiwYQMWL14MBwcHFBQUYNOmTYiPj8fKlStN648aNcr07127duGbb77B3r17ERERAQB48MEHAQCrV6/G3Llz4eXlJeXwiCTH4iOyMx999BF69eplmnZ3d0dpaSlWrVqFAwcOoLS01OyM8PLly/D29sahQ4dgMBjwf//3f43u+3//+x98fHxMZ3+3Pfzww1ixYgWOHz+O0aNHSzIuImth8RHZmaCgILOLWwwGAx555BGUlpYiISEBarUanTp1wt69e7F27VpUVVUBACoqKgCg3hWhf3X58mVcuHAB3bp1a3D57X0Q2TMWH5GdO3/+PHJzc5GSkoLo6GjT/M8//9xsPU9PTwDApUuXoFarG9xX165d0adPH3zwwQcNLvf19RUnNJGMWHxEdu7GjRsAgA4dOpjm3bp1Czt37jRbb+TIkXBwcMAHH3zQ6EUqjzzyCPbs2QM3Nzf069dPutBEMmLxEdm5gIAA+Pj4YPny5XB0dISTkxM2bdpUb72+ffsiPj4eSUlJ0Ol0eOKJJ+Do6IgTJ06gX79+GD9+PJ566imkpaUhKioKzz//PIKDg1FTU4Pz58/j888/R1paGlxdXWUYJZF4WHxEds7Z2RlpaWl47bXXMGvWLHh4eGDKlCnw8fHBiy++aLbuihUrcPfdd2Pz5s3Yvn07XF1dMWDAADz88MMA/jxrzMjIwDvvvIPU1FQUFRXB1dUVffv2hUajgbOzsxxDJBKVUFlZaZQ7BBERkbXwyS1ERKQoLD4iIlIUFh8RESkKi4+IiBSFxUdERIrC4iMiIkVh8RERkaKw+IiISFFYfEREpCj/HzxVp9/5ezZ9AAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"die_bins = np.arange(0.5, 6.6, 1)\n",
"die.hist(bins = die_bins)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Variables whose successive values are separated by the same fixed amount, such as the values on rolls of a die (successive values separated by 1), fall into a class of variables that are called *discrete*. The histogram above is called a *discrete* histogram. Its bins are specified by the array `die_bins` and ensure that each bar is centered over the corresponding integer value. \n",
"\n",
"It is important to remember that the die can't show 1.3 spots, or 5.2 spots – it always shows an integer number of spots. But our visualization spreads the probability of each value over the area of a bar. While this might seem a bit arbitrary at this stage of the course, it will become important later when we overlay smooth curves over discrete histograms.\n",
"\n",
"Before going further, let's make sure that the numbers on the axes make sense. The probability of each face is 1/6, which is 16.67% when rounded to two decimal places. The width of each bin is 1 unit. So the height of each bar is 16.67% per unit. This agrees with the horizontal and vertical scales of the graph."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Empirical Distributions\n",
"The distribution above consists of the theoretical probability of each face. It is called a *probability distribution* and is not based on observed data. It can be studied and understood without any dice being rolled.\n",
"\n",
"*Empirical distributions,* on the other hand, are distributions of observed data. They can be visualized by *empirical histograms*. \n",
"\n",
"Let us get some data by simulating rolls of a die. This can be done by sampling at random with replacement from the integers 1 through 6. We have used `np.random.choice` for such simulations before. But now we will introduce a Table method for doing this. This will make it easier for us to use our familiar Table methods for visualization.\n",
"\n",
"The Table method is called `sample`. It draws at random with replacement from the rows of a table. Its argument is the sample size, and it returns a table consisting of the rows that were selected. An optional argument `with_replacement=False` specifies that the sample should be drawn without replacement. But that does not apply to rolling a die.\n",
"\n",
"Here are the results of 10 rolls of a die."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
" \n",
"
\n",
"
Face
\n",
"
\n",
" \n",
" \n",
"
\n",
"
2
\n",
"
\n",
"
\n",
"
4
\n",
"
\n",
"
\n",
"
5
\n",
"
\n",
"
\n",
"
5
\n",
"
\n",
"
\n",
"
1
\n",
"
\n",
"
\n",
"
6
\n",
"
\n",
"
\n",
"
1
\n",
"
\n",
"
\n",
"
4
\n",
"
\n",
"
\n",
"
6
\n",
"
\n",
"
\n",
"
5
\n",
"
\n",
" \n",
"
"
],
"text/plain": [
"Face\n",
"2\n",
"4\n",
"5\n",
"5\n",
"1\n",
"6\n",
"1\n",
"4\n",
"6\n",
"5"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"die.sample(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can use the same method to simulate as many rolls as we like, and then draw empirical histograms of the results. Because we are going to do this repeatedly, we define a function `empirical_hist_die` that takes the sample size as its argument, rolls a die as many times as the argument, and then draws a histogram of the observed results."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"def empirical_hist_die(n):\n",
" die.sample(n).hist(bins = die_bins)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Empirical Histograms\n",
"\n",
"Here is an empirical histogram of 10 rolls. It doesn't look very much like the probability histogram above. Run the cell a few times to see how it varies."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAbEAAAEcCAYAAABJUoqBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dfVQVdeLH8c+IkQK2GBGmohlcNVlNw9R0q003Kjnmc0bunl1LU+iJSlK2Nctsycd+Zsha2olWcyOlMiw9tequj8Rmlqu5YQhqCiYKBYok9/7+6HBPNwSHuvcOQ+/XOZ7TzHe438/k1Y8zd2auUVZW5hIAADbUwuoAAAD8VJQYAMC2KDEAgG1RYgAA26LEAAC2RYkBAGyLEgMA2BYlBgCwLUrMYvn5+VZH8Dn2sXlgH5uH5raPlBgAwLYoMQCAbVFiAADbosQAALbVZEpswYIFCg0NVUpKinudy+VSWlqaunfvrnbt2ik+Pl6ff/65hSkBAE1JkyixvLw8ZWZmKiYmxmP9okWLlJ6erjlz5mjjxo0KDw/XyJEj9e2331qUFADQlFheYuXl5Zo0aZIWL16s0NBQ93qXy6WMjAwlJydr+PDh6tGjhzIyMlRRUaHVq1dbmBgA0FRYXmK1JXXTTTd5rC8qKlJJSYkGDx7sXte6dWsNHDhQubm5/o4JAGiCWlo5eWZmpgoKCrR06dI6YyUlJZKk8PBwj/Xh4eE6duxYva9pxxv5/JnZqZYqqzjtt/lq5X6y129zhYYEqYXO+W2+WnZ87zUW+9g82GkfHQ5Hg+OWlVh+fr5mzZql999/X4GBgfVuZxiGx7LL5aqz7ocutMNNTX5+vl8z7/2iSAuXv+O3+SSpsrJSwcHBfpvvyYfGK6arf98H/v59tAL72Dw0t3207HTiRx99pNLSUl1//fUKCwtTWFiYtm3bpmXLliksLEyXXnqpJOn48eMeP3fixIk6R2cAgF8my47E4uPj1adPH491999/v6KiovToo48qOjpaERER2rRpk6699lpJUlVVlXbs2KFZs2ZZERkA0MRYVmKhoaEeVyNKUlBQkNq2basePXpIkhITE7VgwQI5HA5FR0dr/vz5Cg4O1pgxY6yIDABoYiy9sONCHn74YZ05c0YpKSkqKytTbGyssrOz1aZNG6ujAQCagCZVYuvWrfNYNgxDqampSk1NtSgRAKAps/w+MQAAfipKDABgW5QYAMC2KDEAgG1RYgAA26LEAAC2RYkBAGyLEgMA2BYlBgCwLUoMAGBblBgAwLYoMQCAbVFiAADbosQAALZFiQEAbIsSAwDYFiUGALAtSgwAYFuUGADAtigxAIBtUWIAANuixAAAtkWJAQBsixIDANgWJQYAsC1KDABgW5QYAMC2KDEAgG1RYgAA26LEAAC2RYkBAGyLEgMA2JbpEtu2bZtOnDhR73hpaam2bdvmlVAAAJhhusSGDRumTZs21Tv+r3/9S8OGDfNKKAAAzDBdYi6Xq8Hx6upqtWjB2UkAgP+0bGjwm2++UXl5uXv55MmTOnz4cJ3tysrKtGbNGl1xxRXeTwgAQD0aLLElS5Zo7ty5kiTDMJSamqrU1NTzbutyuTRjxgzvJwQAoB4Nlthvf/tbtWrVSi6XS7NmzdKoUaPUs2dPj20Mw1BQUJD69Omjvn37+jQsAAA/1GCJDRgwQAMGDJAknT17VsOGDVNMTIxfggEAcCENltgPTZ8+3Zc5AABotHpLbNWqVZKku+66S4ZhuJcvJCEhwTvJAAC4gHpLLCkpSYZhaPTo0QoMDFRSUtIFX8wwDEoMAOA39ZbYp59+KkkKDAz0WAYAoKmot8Q6derU4DIAAFaz7BEbL7/8sgYOHKjIyEhFRkbqlltu0YYNG9zjLpdLaWlp6t69u9q1a6f4+Hh9/vnnVsUFADRBpq9OlKTNmzcrMzNThYWFOnXqVJ1HURmGod27d5t6rfbt2+vpp59WVFSUnE6nVq1apfHjx2vz5s369a9/rUWLFik9PV3p6elyOByaO3euRo4cqby8PLVp06YxsQEAzZTpEsvIyNATTzyhyy67TH379tXVV1/9syaOj4/3WJ4xY4aWL1+uvLw8xcTEKCMjQ8nJyRo+fLh7fofDodWrV2vChAk/a24AQPNgusTS09M1aNAgrVmzxn2xh7fU1NTo7bffVmVlpfr166eioiKVlJRo8ODB7m1at26tgQMHKjc3lxIDAEhqRImVlpbqscce82qB7d27V3FxcaqqqlJwcLBWrFihmJgY5ebmSpLCw8M9tg8PD9exY8e8Nj8AwN5Ml1jv3r116NAhr07ucDi0ZcsWlZeXa+3atUpMTFROTo573DAMj+1dLleddT+Wn5/v1Yz+4M/MFZXVqqys9Nt8tfw5Z0VlhSXvAzu+9xqLfWwe7LSPDoejwXHTJfbss88qISFBN998s2688cafHUz6/h60q666SpLUp08f7dq1S0uWLNHUqVMlScePH1fHjh3d2584caLO0dmPXWiHm5r8/Hy/Zt77RZGCg4P9Np/0fYH5c86Q4BA5HJ39Np/k/99HK7CPzUNz20fTJZaWlqZLLrlEI0aMUFRUlCIjIxUQEOCxjWEYysrK+slhnE6nqqur1blzZ0VERGjTpk269tprJUlVVVXasWOHZs2a9ZNfHwDQvJgusf3798swDHXs2FFnz57VgQMH6mxzoVN9P/TUU08pLi5OHTp0UEVFhVavXq2tW7cqKytLhmEoMTFRCxYskMPhUHR0tObPn6/g4GCNGTPG9BwAgObNdInt2bPHqxOXlJTovvvu0/Hjx3XJJZcoJiZGq1ev1pAhQyRJDz/8sM6cOaOUlBSVlZUpNjZW2dnZ3CMGAHBr1M3O3pSRkdHg+IW+SRoAANMldvjwYVPbRUZG/uQwAAA0hukS69Wrl6nPvE6ePPmzAgEAYJbpEnvxxRfrlFhNTY2Kior0j3/8Q5dffrkmTpzo9YAAANTHdImNHz++3rHk5GQNHjxYFRUVXgkFAIAZXvkqlpCQEI0fP15LlizxxssBAGCK175P7KKLLuK5hgAAv/JKie3Zs0d/+9vf1K1bN2+8HAAApvzsqxPLy8v1zTffKCQkROnp6V4NBwBAQ0yX2KBBg+qUmGEYCg0N1VVXXaXRo0crNDTU6wEBAKhPo77ZGQCApsRrF3YAAOBvlBgAwLYoMQCAbVFiAADbosQAALZlqsSqqqo0Z84cbdy40dd5AAAwzVSJtWrVSs8//7yOHDni6zwAAJhm+nRiz549VVBQ4MssAAA0iukSe/LJJ/Xaa69pw4YNvswDAIBppp/Y8cILLyg0NFQJCQlq3769rrzySrVu3dpjG8MwlJWV5fWQAACcj+kS279/vwzDUMeOHSVJhw4dqrPN+R4QDACAr5gusT179vgyBwAAjcZ9YgAA22pUidXU1CgrK0sPPPCAxo0bp//+97+SpLKyMr311lsqLi72SUgAAM7HdImVl5crLi5OkydP1jvvvKMPPvhApaWlkqQ2bdroiSee0EsvveSzoAAA/JjpEnv66ae1f/9+vfnmm9q9e7dcLpd7LCAgQMOGDdMHH3zgk5AAAJyP6RJbt26d7rvvPv3ud78771WIUVFROnz4sFfDAQDQENMlVlZWpi5dutQ77nK5VF1d7ZVQAACYYbrEOnXqpH379tU7vm3bNkVHR3slFAAAZpgusbFjx+q1117Ttm3b3OtqTysuXbpUOTk5uvvuu72fEACAepi+2fmRRx7Rf/7zH91xxx2Kjo6WYRiaPn26Tp48qZKSEsXHx2vy5Mm+zAoAgAfTJXbRRRcpKytLb775pt5++20ZhqFz587pmmuu0ahRo3TnnXfy2CkAgF+ZLrFaY8eO1dixY32RBQCARml0iUnSf//7X/fl9JGRkYqJieEoDADgd40qsTVr1mjmzJk6evSo+2ZnwzDUvn17zZw5kyM0AIBfmS6xlStX6oEHHpDD4dDTTz+t6OhouVwuffnll3rttdc0efJkVVdXa/z48b7MCwCAm+kSW7hwoWJjY5WTk6NWrVp5jE2aNElDhw7VwoULKTEAgN+Yvk/sq6++0tixY+sUmCS1atVK48aN09GjR70aDgCAhpguse7du+vYsWP1jh89elTdunXzSigAAMwwXWKzZs1SZmam3nrrrTpja9as0WuvvaZnnnnGq+EAAGiI6c/EFi9erLCwMN17772aPn26unTpIsMwVFBQoK+//lpRUVF64YUX9MILL7h/xjAMZWVl+SQ4AACmS2z//v0yDEMdO3aUJPfnXxdffLE6duyos2fP6n//+5/Hz3DvGADAl0yX2J49e3yZAwCARjP9mRgAAE0NJQYAsC3LSmzhwoW6+eabFRkZqaioKI0bN67Ol266XC6lpaWpe/fuateuneLj4/X5559blBgA0NRYVmJbt27Vvffeqw0bNmjt2rVq2bKlRowYoVOnTrm3WbRokdLT0zVnzhxt3LhR4eHhGjlypL799lurYgMAmpCf9BR7b8jOzvZYXrp0qTp16qSdO3fq9ttvl8vlUkZGhpKTkzV8+HBJUkZGhhwOh1avXq0JEyZYERsA0IQ0mc/EKioq5HQ6FRoaKkkqKipSSUmJBg8e7N6mdevWGjhwoHJzc62KCQBoQkwfiV1zzTVKS0vT0KFDzzu+fv16TZs2TZ9++ulPCjJ9+nT17NlT/fr1kySVlJRIksLDwz22Cw8Pb/DxV/n5+T9pfiv5M3NFZbUqKyv9Nl8tf8557tx3yv1kr9/mq+XPOUNDgtRC5/w2Xy07/vlqLH/uo1MtVVZx2m/z1bLTe9XhcDQ4brrEDh061OBfRJWVle4vymysP//5z9q5c6fWr1+vgIAAj7Ef3zDtcrkavIn6Qjvc1OTn5/s1894vihQcHOy3+aTv3xv+nPN01Xf6v1fe8dt8kv/38cmHxiumq3/f6/5+r1rBij+PC5fzXv05GnU6saHyOHDggNq0adPoAKmpqVqzZo3Wrl2rK6+80r0+IiJCknT8+HGP7U+cOFHn6AwA8MvU4JHY66+/rlWrVrmX58+fr8zMzDrblZWVad++fbr11lsbNfm0adOUnZ2tnJwcde3a1WOsc+fOioiI0KZNm3TttddKkqqqqrRjxw7NmjWrUfMAAJqnBkussrLS/dmUJJWXl8vpdHpsYxiGgoKC9Mc//lHTp083PfHUqVP1xhtvaMWKFQoNDXXPExwcrJCQEBmGocTERC1YsEAOh0PR0dGaP3++goODNWbMmMbsIwCgmWqwxCZNmqRJkyZJknr16qXnnnuu3gs7GmvZsmWS5L58vta0adOUmpoqSXr44Yd15swZpaSkqKysTLGxscrOzv5Jpy0BAM2P6Qs7PvvsM69OXFZWdsFtDMNQamqqu9QAAPihRt/s/O233+rIkSM6deqUXC5XnfFBgwZ5JRgAABdiusROnTqladOm6a233lJNTU2d8dpL30+ePOnVgAAA1Md0iT3yyCPKycnRpEmTNGjQIPeTNQAAsIrpEvvwww81efJkPfvss77MAwCAaaZvdg4MDFRUVJQvswAA0CimS2z48OH64IMPfJkFAIBGMV1iDz74oIqLizVlyhTl5eWpuLhYX3/9dZ1fAAD4i+nPxGJjY2UYhnbv3q2srKx6t+PqRACAv5gusccff7zBBwADAOBvpkuMp2YAAJqan/TNzjU1NTp58qTOnfP/l/IBAFCrUSW2a9cujRgxQu3bt1d0dLS2bdsmSSotLdWdd96pf/3rXz4JCQDA+ZgusY8++khDhw7VwYMHddddd3k8NzEsLEwVFRX6+9//7pOQAACcj+kSe+aZZxQVFaXc3Fw9+eSTdcZvuOEG/ec///FqOAAAGmK6xHbt2qXf//73atWq1XmvUuzQoYPHF2gCAOBrpkusRYsWatGi/s1LSkrUunVrr4QCAMAM0yXWu3dvrV+//rxj1dXVevPNN9WvXz+vBQMA4EJMl9ijjz6qf//733rggQe0Z88eSVJxcbE+/PBD3XHHHTp48KAee+wxnwUFAODHTN/sfPPNN2vp0qVKSUnR66+/LklKTEyUy+XSr371Ky1btkzXXXedz4ICAPBjpktMksaMGaOhQ4dq06ZN+vLLL+V0OtWlSxcNGTJEISEhvsoIAMB5NarEJCkoKEjx8fG+yAIAQKOY/kzsvffeU0pKSr3jKSkp9V74AQCAL5guscWLF+v06dP1jldVVWnRokVeCQUAgBmmS2zfvn3q3bt3vePXXHON9u/f75VQAACYYbrEzp07pzNnztQ7fubMGZ09e9YroQAAMMN0ifXo0UNr166V0+msM+Z0OrV27Vp1797dq+EAAGiI6RKbMmWKPv74YyUkJGj37t06e/aszp49q927d+vuu+/Wxx9/rMmTJ/syKwAAHkxfYj969GgdPHhQaWlp+uCDDyRJhmHI5XLJMAxNmzZN48aN81lQAAB+rFH3iU2dOlVjxozRu+++q8LCQrlcLnXp0kXDhg3TlVde6aOIAACcn6kSO3PmjO68806NGzdOv//97/Xggw/6OhcAABdk6jOx1q1b69NPP1VNTY2v8wAAYJrpCzt+85vfaPv27b7MAgBAo5gusTlz5mjXrl2aMWOGCgsLz3upPQAA/mT6wo7rrrtOLpdL6enpSk9PV4sWLXTRRRd5bGMYho4ePer1kAAAnI/pEhs5cqQMw/BlFgAAGsV0iWVkZPgyBwAAjWb6MzEAAJqaRpXYoUOH9NBDD6l3796KjIzU1q1bJUmlpaV67LHHtHv3bp+EBADgfEyfTvzf//6n2267TU6nU3379tWhQ4fc942FhYUpLy9PZ8+e1YsvvuizsAAA/JDpEps5c6batGmjDz/8UAEBAYqOjvYYj4uL09tvv+31gAAA1Mf06cTt27dr4sSJuvzyy897lWJkZKSOHTvm1XAAADSkUV+KGRwcXO/4qVOnFBAQ4JVQAACY0agvxdyyZct5x1wul95991317t3ba8EAALgQ0yWWmJiod955R3PnztXJkyclff+Nzl988YXuueceffLJJzzdHgDgV6ZLbPTo0Zo5c6bmzZunfv36udcNGDBAOTk5mj17tm655ZZGTb5t2zbddddduvrqqxUaGqqVK1d6jLtcLqWlpal79+5q166d4uPj9fnnnzdqDgBA89WoL8VMTk7WmDFjtHbtWhUUFMjpdKpLly6644471Llz50ZPXllZqR49eighIUFTpkypM75o0SL3sxodDofmzp2rkSNHKi8vT23atGn0fACA5uWCJXb27Fm99957Kiws1KWXXqpbb71VSUlJXpk8Li5OcXFxklTnNV0ulzIyMpScnKzhw4dL+v7RVw6HQ6tXr9aECRO8kgEAYF8NllhJSYmGDh2qgwcPyuVySZKCg4P1xhtvaNCgQT4NVlRUpJKSEg0ePNi9rnXr1ho4cKByc3MpMQBAw5+JzZ49W4WFhUpKStIbb7yhtLQ0XXzxxXr88cd9HqykpESSFB4e7rE+PDxcx48f9/n8AICmr8EjsY0bNyohIUGzZ892r7v88ss1ceJEffXVV+rQoYPPA/74xmqXy9XgV8Lk5+f7OpLX+TNzRWW1Kisr/TZfLX/Oea7mXPPfx3PfKfeTvX6br5Y/5/xVSIjKKyr8Nl8t//5/NZr9e7WisuJn/R3ncDgaHL/g6cT+/ft7rBswYIBcLpeOHDni0xKLiIiQJB0/flwdO3Z0rz9x4kSdo7MfutAONzX5+fl+zbz3i6IGb1r3hcrKSr/O2TKgZbPfx9NV3+n/XnnHb/NJ/t/H5HtG/iL2sbm/V0OCQ+RwNP7CP7MaPJ1YU1OjVq1aeayrXa6qqvJZKEnq3LmzIiIitGnTJve6qqoq7dixo06xAgB+mS54dWJhYaE+/vhj9/I333wj6fsjiJCQkDrbx8bGmp68oqJCBQUFkr6/cfrIkSP67LPP1LZtW0VGRioxMVELFiyQw+FQdHS05s+fr+DgYI0ZM8b0HACA5uuCJZaWlqa0tLQ66398cUftZ1W1T/Mw45NPPtGwYcPqzJWQkKCMjAw9/PDDOnPmjFJSUlRWVqbY2FhlZ2dzjxgAQNIFSiw9Pd2nk99www0qKyurd9wwDKWmpio1NdWnOQAA9tRgid19993+ygEAQKOZfnYiAABNDSUGALAtSgwAYFuUGADAtigxAIBtUWIAANuixAAAtkWJAQBsixIDANgWJQYAsC1KDABgW5QYAMC2KDEAgG1RYgAA26LEAAC2RYkBAGyLEgMA2BYlBgCwLUoMAGBblBgAwLYoMQCAbVFiAADbosQAALZFiQEAbIsSAwDYFiUGALAtSgwAYFuUGADAtigxAIBtUWIAANuixAAAtkWJAQBsixIDANgWJQYAsC1KDABgW5QYAMC2KDEAgG1RYgAA26LEAAC2RYkBAGyLEgMA2BYlBgCwLUoMAGBblBgAwLZsUWLLli1Tr169FBERoZtuuknbt2+3OhIAoAlo8iWWnZ2t6dOn67HHHtO///1v9evXT2PHjtXhw4etjgYAsFiTL7H09HTdfffd+uMf/6hu3bpp3rx5ioiI0CuvvGJ1NACAxYyysjKX1SHqU11drSuuuELLly/XiBEj3OunTp2qffv26b333rMwHQDAak36SKy0tFQ1NTUKDw/3WB8eHq7jx49blAoA0FQ06RKrZRiGx7LL5aqzDgDwy9OkSywsLEwBAQF1jrpOnDhR5+gMAPDL06RLLDAwUL1799amTZs81m/atEn9+/e3KBUAoKloaXWAC7n//vs1efJkxcbGqn///nrllVdUXFysCRMmWB0NAGCxJn0kJkmjRo1SWlqa5s2bpxtuuEE7d+5UVlaWOnXqZHW0n2zbtm266667dPXVVys0NFQrV660OpLXLVy4UDfffLMiIyMVFRWlcePGad++fVbH8qqXX35ZAwcOVGRkpCIjI3XLLbdow4YNVsfymQULFig0NFQpKSlWR/GatLQ0hYaGevzq2rWr1bG8rri4WFOmTFFUVJQiIiLUv39/bd261epYXtHkj8QkaeLEiZo4caLVMbymsrJSPXr0UEJCgqZMmWJ1HJ/YunWr7r33Xl177bVyuVz661//qhEjRig3N1dt27a1Op5XtG/fXk8//bSioqLkdDq1atUqjR8/Xps3b9avf/1rq+N5VV5enjIzMxUTE2N1FK9zOBzKyclxLwcEBFiYxvvKysp06623asCAAcrKylJYWJiKioqazXUFtiix5iYuLk5xcXGSpKSkJIvT+EZ2drbH8tKlS9WpUyft3LlTt99+u0WpvCs+Pt5jecaMGVq+fLny8vKaVYmVl5dr0qRJWrx4sebOnWt1HK9r2bKlIiIirI7hMy+88ILatWunpUuXutddeeWV1gXysiZ/OhHNQ0VFhZxOp0JDQ62O4hM1NTVas2aNKisr1a9fP6vjeFVycrKGDx+um266yeooPlFYWKirr75avXr10j333KPCwkKrI3nVunXrFBsbqwkTJig6Olq/+c1v9NJLL8nlarLPuWgUjsTgF9OnT1fPnj2b3V/we/fuVVxcnKqqqhQcHKwVK1Y0q1NumZmZKigo8PhXfHPSt29fLVmyRA6HQydOnNC8efMUFxennTt36tJLL7U6nlcUFhZq+fLlSkpKUnJysvbs2aNp06ZJku677z6L0/18lBh87s9//rN27typ9evXN7vPGxwOh7Zs2aLy8nKtXbtWiYmJysnJUY8ePayO9rPl5+dr1qxZev/99xUYGGh1HJ+45ZZbPJb79u2r3r176/XXX9cDDzxgUSrvcjqd6tOnj2bOnClJuuaaa1RQUKBly5ZRYsCFpKamKjs7W++++26zOg9fKzAwUFdddZUkqU+fPtq1a5eWLFmiF1980eJkP99HH32k0tJSXX/99e51NTU12r59u1555RUdPXpUF198sYUJvS8kJETdu3dXQUGB1VG8JiIiQt26dfNY17VrVx05csSiRN5FicFnpk2bpuzsbOXk5DTLy5bPx+l0qrq62uoYXhEfH68+ffp4rLv//vsVFRWlRx99tFkenVVVVSk/P1833HCD1VG8ZsCAATpw4IDHugMHDigyMtKiRN5FiVmgoqLC/S89p9OpI0eO6LPPPlPbtm2bzRtr6tSpeuONN7RixQqFhoaqpKREkhQcHKyQkBCL03nHU089pbi4OHXo0EEVFRVavXq1tm7dqqysLKujeUXtfVM/FBQUpLZt2zaL06WS9Je//EW33XabOnbs6P5M7PTp00pISLA6mtckJSUpLi5O8+fP16hRo/TZZ5/ppZde0owZM6yO5hVN+qtYmqstW7Zo2LBhddYnJCQoIyPDgkTeV99ViNOmTVNqaqqf0/hGYmKitmzZouPHj+uSSy5RTEyMHnroIQ0ZMsTqaD4THx+vHj16aN68eVZH8Yp77rlH27dvV2lpqS677DL17dtXTzzxhLp37251NK/asGGDZs2apQMHDqhjx46aNGmSJk+e3CwepE6JAQBsi/vEAAC2RYkBAGyLEgMA2BYlBgCwLUoMAGBblBgAwLYoMcACK1eurPNljLW/Nm/ebHU8wDZ4YgdgoczMTLVv395j3Y+fcwegfpQYYKGePXu6HyAMoPE4nQg0MRs3btTYsWPVrVs3XXHFFbr++uu1ePFi1dTU1Nk2MzNTN954o9q1a6fOnTtr6NChys3NdY+fPn1aM2fOVK9evRQeHq5evXpp/vz5cjqd/twlwGc4EgMsVFNTo3PnzrmXDcNQYWGhbrzxRt133326+OKLtXv3bs2ZM0elpaV66qmn3Nv+5S9/0Ysvvqg//OEPSk1NVYsWLZSXl6cjR46of//+OnfunEaPHq39+/crJSVFMTExysvL07x583Tq1Ck9++yzFuwx4F2UGGCh6667zmN5wIABWr9+vXvZ5XJp4MCBqq6u1uLFi/Xkk0+qRYsWKigo0JIlS5SUlKS//vWv7u1vvfVW93+vXr1aO3bs0Lp16zRo0CBJ0k033SRJmjNnjpKTkxUeHu7L3QN8jhIDLLRixQp16NDBvRwSEqLi4mI999xz+vDDD1VcXOxxpPb1118rIiJCmzdvltPp1J/+9Kd6X36FTXUAAAHtSURBVPuf//ynIiMj3UdltQYPHqzZs2crLy9PQ4cO9cl+Af5CiQEW6tGjh8eFHU6nU0OGDFFxcbGmT58uh8Oh1q1ba926dZo/f76qqqokSSdPnpSkOlc2/tDXX3+tw4cP67LLLjvveO1rAHZGiQFNyMGDB/XJJ59o6dKlGjdunHv9+++/77FdWFiYJOnYsWNyOBznfa1LL71UnTt31quvvnre8U6dOnknNGAhSgxoQk6fPi1Juuiii9zrvvvuO7355pse2/32t79VixYt9Oqrr9Z7gcaQIUO0du1aBQcHq2vXrr4LDViIEgOakG7duikyMlLPPPOMAgIC1LJlSy1ZsqTOdl26dFFSUpLS09NVUVGh22+/XQEBAfr444/VtWtXjRo1SnfeeadWrlyp4cOH6/7771fPnj1VXV2tgwcP6v3339fKlSsVFBRkwV4C3kOJAU1IYGCgVq5cqccff1xTpkxR27ZtNX78eEVGRuqhhx7y2Hb27Nm66qqrtGzZMq1atUpBQUGKiYnR4MGDJX1/NJedna3nn39emZmZKioqUlBQkLp06aK4uDgFBgZasYuAVxllZWUuq0MAAPBT8MQOAIBtUWIAANuixAAAtkWJAQBsixIDANgWJQYAsC1KDABgW5QYAMC2KDEAgG39P1xoFA3L54jDAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"empirical_hist_die(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When the sample size increases, the empirical histogram begins to look more like the histogram of theoretical probabilities."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAbEAAAEcCAYAAABJUoqBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXAUZeLG8acJhCPBDUeMAuEwDOcCYYmAIqioUWG5QYy45aogEBHxQMADFMGAIK5gYHGRNSyHRIgaUaFAQAVEWRVBWSQI4RASIQeYgSQ/MvP7w2LKmKsjM9PT8fuposrutzPv0+WQhz6mx8jNzXULAAAbqmZ1AAAAfi9KDABgW5QYAMC2KDEAgG1RYgAA26LEAAC2RYkBAGyLEgMA2BYlZrG0tDSrI/gc+1g1sI9VQ1XbR0oMAGBblBgAwLYoMQCAbVFiAADbosQAALZFiQEAbIsSAwDYFiUGALCt6lYHgH9lnsrR6Zyzfp0zz1mo7w4c8dt8Detdpojwen6bD4B1KLE/mNM5ZzV9/gq/zul0OhUSEuK3+aaOH0GJAX8QnE4EANgWJQYAsC1KDABgW5QYAMC2KDEAgG1RYgAA26LEAAC2RYkBAGyLEgMA2BYlBgCwLUoMAGBblBgAwLYoMQCAbVFiAADbosQAALZFiQEAbIsSAwDYFiUGALAtSgwAYFuUGADAtigxAIBtUWIAANuixAAAtmVZic2bN0833nijIiMjFRUVpeHDh2vfvn3FtnG73UpISFCbNm10xRVXqG/fvvrf//5nUWIAQKCxrMS2bdum+++/Xxs2bFBqaqqqV6+ugQMHKicnx7PNK6+8osTERM2ePVubN29WeHi4Bg0apJ9//tmq2ACAAFLdqolTUlKKLS9evFhNmzbVzp07dfvtt8vtdmvRokWaMGGCBgwYIElatGiRHA6H1qxZo3vvvdeK2ACAABIw18Ty8vLkcrkUFhYmSTpy5IgyMzPVu3dvzza1a9fWtddeq88//9yqmACAAGLZkdhvTZ48WR06dFDXrl0lSZmZmZKk8PDwYtuFh4fr5MmTZb5OWlqa70L6iD8z5zkL5XQ6/TbfRf6cM8+ZZ8n7wI7vvcpiH6sGO+2jw+EodzwgSuzJJ5/Uzp07tX79egUFBRUbMwyj2LLb7S6x7tcq2uFAk5aW5tfM3x04opCQEL/NJ/1SYP6cMzQkVA5HM7/NJ/n//6MV2Meqoarto+WnE6dMmaK1a9cqNTVVzZs396yPiIiQJP3000/Ftj99+nSJozMAwB+TpSU2adIkrVmzRqmpqWrVqlWxsWbNmikiIkJbtmzxrMvPz9dnn32mbt26+TsqACAAWXY68fHHH9fq1au1fPlyhYWFea6BhYSEKDQ0VIZhaOzYsXrppZfkcDjUsmVLzZ07VyEhIRo6dKhVsQEAAcSyEluyZIkkeW6fv2jSpEmaMmWKJOnhhx/W+fPnNXHiROXm5qpLly5KSUlR3bp1/Z4XABB4LCux3NzcCrcxDENTpkzxlBoAAL9m+Y0dAAD8XpQYAMC2KDEAgG2Zvia2fft2tW7dWg0bNix1PCsrS/v371ePHj28Fs4KmadydDrnrN/my3MW6rsDR/w2X0Fhod/mAi6Fv/8uSv7/+9iw3mWKCK/nt/mqItMl1q9fPy1evFjDhg0rdfzjjz/WyJEjlZ2d7bVwVjidc1bT56/w23z+fprFhPsG+W0u4FL4+++i5P+/j1PHj6DELpHp04lut7vc8cLCQlWrxtlJAID/lHskdvbsWZ05c8aznJ2drWPHjpXYLjc3V2vXrtWVV17p/YQAAJSh3BJbuHChXnzxRUkVf2bL7XbrmWee8X5CAADKUG6J3XDDDapVq5bcbremT5+uwYMHq0OHDsW2MQxDderUUefOnRUTE+PTsAAA/Fq5Jda9e3d1795dklRQUKB+/fqpffv2fgkGAEBFTN+dOHnyZF/mAACg0sossVWrVkmS7rzzThmG4VmuSFxcnHeSAQBQgTJLLD4+XoZhaMiQIQoODlZ8fHyFL2YYBiUGAPCbMkvsm2++kSQFBwcXWwYAIFCUWWJNmzYtdxkAAKvxiA0AgG1V6ksxt27dqqSkJKWnpysnJ6fEo6gMw9Du3bu9GhAAgLKYLrFFixbpqaeeUsOGDRUTE6O2bdv6MhcAABUyXWKJiYnq0aOH1q5d67nZAwAAK5m+JpaVlaXBgwdTYACAgGG6xKKjo3X06FFfZgEAoFJMl9jMmTO1cuVKffLJJ77MAwCAaaaviSUkJOiyyy7TwIEDFRUVpcjISAUFBRXbxjAMJScnez0kAAClMV1i+/fvl2EYatKkiQoKCnTw4MES2xiG4dVwAACUx3SJ7d2715c5AACoNJ7YAQCwLdNHYseOHTO1XWRk5O8OAwBAZZgusY4dO5q65pWdnX1JgQAAMMt0ib366qslSqyoqEhHjhzRm2++qcsvv1wjR470ekAAAMpiusRGjBhR5tiECRPUu3dv5eXleSUUAABmeOXGjtDQUI0YMUILFy70xssBAGCK1+5OrFGjhk6ePOmtlwMAoEKV+j6xsuzdu1f//Oc/1bp1a2+8HIAKZJ7K0emcs36dM89ZqO8OHPHbfAWFhX6bC/Z1yXcnnjlzRmfPnlVoaKgSExO9Gg5A6U7nnNX0+Sv8OqfT6VRISIjf5ptw3yC/zQX7Ml1iPXr0KFFihmEoLCxMV111lYYMGaKwsDCvBwQAoCyV+mZnAAACCY+dAgDYlqUltn37dt15551q27atwsLCtGJF8XP8Y8eOVVhYWLE/N998s0VpAQCBxit3J/5eTqdT7dq1U1xcnMaMGVPqNjfccIMWL17sWQ4ODvZXPABAgLO0xGJjYxUbGytJio+PL3WbmjVrKiIiwp+xAAA2EfDXxD777DO1bNlSXbp00fjx43Xq1CmrIwEAAoSpI7H8/Hy98soruvrqq9W7d29fZ/K4+eab1a9fPzVr1kxHjx7VjBkz1L9/f23dulU1a9Ys9WfS0tIuac48Z6GcTuclvUZl+XO+C0UX/L5/kn/3Mc+Zd8nvg9/Dn3Na8T6VeK962x/hvXqpHA5HueOmSqxWrVp6+eWX9eKLL3ollFlDhgzx/Hf79u0VHR2tDh06aMOGDerfv3+pP1PRDlfkuwNH/PqBTn9/gLR6UHW/zif5fx9DQ0LlcDTz23zSL78ULvW9Vxn+fp9KvFd94Y/wXvU106cTO3TooEOHDvkyS4WuvPJKNWrUyPIcAIDAYLrEpk6dqmXLlmnDhg2+zFOurKwsnTx5khs9AACSKnF34vz58xUWFqa4uDg1atRIzZs3V+3atYttYxiGkpOTTU+el5fnOapyuVw6fvy49uzZo3r16qlevXqaNWuW+vfvr4iICB09elTTp09XeHi4/vrXv5qeAwBQdZkusf3798swDDVp0kSSdPTo0RLblPaA4PJ8/fXX6tevn2c5ISFBCQkJiouL07x587Rv3z69+eabOnPmjCIiItSzZ0/9+9//Vt26dSs1DwCgajJdYnv37vX65D179lRubm6Z4ykpKV6fEwBQdQT858QAAChLpUqsqKhIycnJGjdunIYPH65vv/1WkpSbm6u3335bGRkZPgkJAEBpTJfYmTNnFBsbq9GjR+vdd9/Vxo0blZWVJUmqW7eunnrqKb322ms+CwoAwG+Zvib23HPPaf/+/XrrrbfUuXNntWzZ0jMWFBSkfv36aePGjZo6dapPggJmGcYvHwb2pzxnoV/nLCgs9NtcQCAzXWLvv/++HnjgAd18883Kzs4uMR4VFaXVq1d7NRzwe5z5+Zz+sfRtv87p7yc9TLhvkN/mAgKZ6dOJubm5atGiRZnjbrdbhfzrEADgR6ZLrGnTptq3b1+Z49u3by92ihEAAF8zXWLDhg3TsmXLtH37ds+6ix9uXrx4sdatW6e77rrL+wkBACiD6WtijzzyiP773/+qf//+atmypQzD0OTJk5Wdna3MzEz17dtXo0eP9mVWAACKMV1iNWrUUHJyst566y298847MgxDFy5cUKdOnTR48GDdcccdlX7sFAAAl8J0iV00bNgwDRs2zBdZAAColEqXmCR9++23OnbsmCQpMjJS7du35ygMAOB3lSqxtWvXatq0aTpx4oTcbrekX27uaNSokaZNm8YRGgDAr0yX2IoVKzRu3Dg5HA4999xzatmypdxut3744QctW7ZMo0ePVmFhoUaMGOHLvAAAeJgusXnz5qlLly5at26datWqVWxs1KhR6tOnj+bNm0eJAQD8xvTnxH788UcNGzasRIFJUq1atTR8+HCdOHHCq+EAACiP6RJr06aNTp48Web4iRMn1Lp1a6+EAgDADNMlNn36dCUlJentt0s+WHXt2rVatmyZnn/+ea+GAwCgPKaviS1YsEANGjTQ/fffr8mTJ6tFixYyDEOHDh3SqVOnFBUVpfnz52v+/PmenzEMQ8nJyT4JDgCA6RLbv3+/DMNQkyZNJMlz/atmzZpq0qSJCgoK9P333xf7GT47BgDwJdMltnfvXl/mAACg0kxfEwMAINBQYgAA26LEAAC2RYkBAGyLEgMA2BYlBgCwLdMl1qlTJ33wwQdljq9fv16dOnXySigAAMwwXWJHjx6V0+ksc9zpdHq+KBMAAH+o1OnE8p7AcfDgQdWtW/eSAwEAYFa5T+xYuXKlVq1a5VmeO3eukpKSSmyXm5urffv26dZbb/V+QgAAylBuiTmdTmVmZnqWz5w5I5fLVWwbwzBUp04d3XPPPZo8ebJvUgIAUIpyS2zUqFEaNWqUJKljx46aNWuW+vTp45dgAABUxPQDgPfs2ePLHAAAVJrpErvo559/1vHjx5WTkyO3211ivEePHl4JBgBARUyXWE5OjiZNmqS3335bRUVFJcbdbrcMw1B2drZXAwIAUBbTJfbII49o3bp1GjVqlHr06KGwsDBf5gIAoEKmS2zTpk0aPXq0Zs6c6bXJt2/frgULFuibb77RyZMnlZiYqBEjRnjG3W63Zs2apaSkJOXm5qpLly6aO3eu2rZt67UMAAD7Mv1h5+DgYEVFRXl1cqfTqXbt2mnWrFmqXbt2ifFXXnlFiYmJmj17tjZv3qzw8HANGjRIP//8s1dzAADsyXSJDRgwQBs3bvTq5LGxsZo6daoGDBigatWKR3G73Vq0aJEmTJigAQMGqF27dlq0aJHy8vK0Zs0ar+YAANiT6RJ76KGHlJGRoTFjxmjXrl3KyMjQqVOnSvzxliNHjigzM1O9e/f2rKtdu7auvfZaff75516bBwBgX6aviXXp0kWGYWj37t1KTk4ucztv3Z148Ukh4eHhxdaHh4fr5MmTXpkDAGBvpkvsiSeeKPcBwL7y2zkv3spflrS0tEuaL89ZWO7T+n3Bn/NdKLrg9/2T2EdvYx99x59z5jnzLvl31u9hxZy/l8PhKHfcdIlNmTLlksNURkREhCTpp59+UpMmTTzrT58+XeLo7Ncq2uGKfHfgiEJCQi7pNSrD6XT6db7qQdX9Op/EPvoC++gb/t7H0JBQORzN/Daf9EuBXervyUDyu77ZuaioSNnZ2bpw4YK383g0a9ZMERER2rJli2ddfn6+PvvsM3Xr1s1n8wIA7KNSJfbVV19p4MCBatSokVq2bKnt27dLkrKysnTHHXfo448/rtTkeXl52rNnj/bs2SOXy6Xjx49rz549OnbsmAzD0NixY/WPf/xDqamp2rdvn+Lj4xUSEqKhQ4dWah4AQNVkusS++OIL9enTR4cPH9add95Z7LmJDRo0UF5env7zn/9UavKvv/5avXr1Uq9evXT+/HklJCSoV69eeuGFFyRJDz/8sOLj4zVx4kTdeOONysjIUEpKCl++CQCQVIlrYs8//7yioqL00Ucfyel0atmyZcXGe/bsqdWrV1dq8p49eyo3N7fMccMwNGXKFL9fjwMA2IPpI7GvvvpKd999t2rVqlXq3YGNGzcu9gWaAAD4mukSq1atWomnavxaZmZmqY+OAgDAV0yXWHR0tNavX1/qWGFhod566y117drVa8EAAKiI6Wtijz76qIYOHapx48Zp2LBhkqSMjAxt2rRJc+fO1eHDh5WYmOizoABQ1RjGL59N9ac8Z6Ff52xY7zJFhNfz2eubLrEbb7xRixcv1sSJE7Vy5UpJ0tixY+V2u/WnP/1JS5Ys0dVXX+2zoABQ1Zz5+Zz+sfRtv87p7w90Tx0/IjBKTJKGDh2qPn36aMuWLfrhhx/kcrnUokUL3XTTTQoNDfVVRgAASlWpEpOkOnXqqG/fvr7IAgBApZi+seODDz7QxIkTyxyfOHFimTd+AADgC6ZLbMGCBTp37lyZ4/n5+XrllVe8EgoAADNMl9i+ffsUHR1d5ninTp20f/9+r4QCAMAM0yV24cIFnT9/vszx8+fPq6CgwCuhAAAww3SJtWvXTqmpqXK5XCXGXC6XUlNT1aZNG6+GAwCgPKZLbMyYMfryyy8VFxen3bt3q6CgQAUFBdq9e7fuuusuffnllxo9erQvswIAUIzpW+yHDBmiw4cPKyEhQRs3bpT0y1Pm3W63DMPQpEmTNHz4cJ8FBQDgtyr1ObHHH39cQ4cO1Xvvvaf09HS53W61aNFC/fr1U/PmzX0UEQCA0pkqsfPnz+uOO+7Q8OHDdffdd+uhhx7ydS4AACpk6ppY7dq19c0336ioqMjXeQAAMM30jR3XXXedduzY4cssAABUiukSmz17tr766is988wzSk9PL/VWewAA/Mn0jR1XX3213G63EhMTlZiYqGrVqqlGjRrFtjEMQydOnPB6SAAASmO6xAYNGiTDMHyZBQCASjFdYosWLfJlDgAAKs30NTEAAAJNpUrs6NGjGj9+vKKjoxUZGalt27ZJkrKysvTYY49p9+7dPgkJAEBpTJ9O/P7773XbbbfJ5XIpJiZGR48e9XxurEGDBtq1a5cKCgr06quv+iwsAAC/ZrrEpk2bprp162rTpk0KCgpSy5Yti43HxsbqnXfe8XpAAADKYvp04o4dOzRy5Ehdfvnlpd6lGBkZqZMnT3o1HAAA5anUl2KGhISUOZ6Tk6OgoCCvhAIAwIxKfSnmp59+WuqY2+3We++9p+joaK8FAwCgIqZLbOzYsXr33Xf14osvKjs7W9Iv3+h84MAB3Xffffr66695uj0AwK8q9aWYx44d08yZMzVr1izPOkkKCgrSjBkzdMstt/gmJQAApajUl2JOmDBBQ4cOVWpqqg4dOiSXy6UWLVqof//+atasma8yAgBQqgpLrKCgQB988IHS09NVv3593XrrrYqPj/dHNgAAylVuiWVmZqpPnz46fPiw3G63JCkkJESrV69Wjx49/BIQAICylHtjx4wZM5Senq74+HitXr1aCQkJqlmzpp544gl/5QMAoEzlHolt3rxZcXFxmjFjhmfd5ZdfrpEjR+rHH39U48aNfR4QAICylHsklpmZqW7duhVb1717d7ndbh0/ftynwQAAqEi5JVZUVKRatWoVW3dxOT8/33epAAAwocK7E9PT0/Xll196ls+ePStJSktLU2hoaIntu3Tp4rVwCQkJmj17drF1l19+uQ4cOOC1OQAA9lVhiSUkJCghIaHE+t/e3OF2u2UYhudpHt7icDi0bt06zzLPZwQAXFRuiSUmJvorR5mqV6+uiIgIq2MAAAJQuSV21113+StHmdLT09W2bVvVqFFDMTExmjp1qpo3b251LABAAKjUY6f8LSYmRgsXLpTD4dDp06c1Z84cxcbGaufOnapfv36pP5OWlnZJc+Y5C+V0Oi/pNSrLn/NdKLrg9/2T2EdvYx99h330rjxn3iX9XnY4HOWOB3SJ/faBwjExMYqOjtbKlSs1bty4Un+moh2uyHcHjpT7vWne5nQ6/Tpf9aDqfp1PYh99gX30DfbR+0JDQuVw+O7Zuqa/iiUQhIaGqk2bNjp06JDVUQAAAcBWJZafn6+0tDRu9AAASArw04lPP/20brvtNjVp0sRzTezcuXOKi4uzOhoAIAAEdImdOHFCI0eOVFZWlho2bKiYmBht3LhRTZs2tToaACAABHSJLV261OoIAIAAZqtrYgAA/BolBgCwLUoMAGBblBgAwLYoMQCAbVFiAADbosQAALZFiQEAbIsSAwDYFiUGALAtSgwAYFuUGADAtigxAIBtUWIAANuixAAAtkWJAQBsixIDANgWJQYAsC1KDABgW5QYAMC2KDEAgG1RYgAA26LEAAC2RYkBAGyLEgMA2BYlBgCwLUoMAGBblBgAwLYoMQCAbVFiAADbosQAALZFiQEAbIsSAwDYFiUGALAtSgwAYFuUGADAtigxAIBt2aLElixZoo4dOyoiIkLXX3+9duzYYXUkAEAACPgSS0lJ0eTJk/XYY4/pk08+UdeuXTVs2DAdO3bM6mgAAIsFfIklJibqrrvu0j333KPWrVtrzpw5ioiI0NKlS62OBgCwmJGbm+u2OkRZCgsLdeWVV+r111/XwIEDPesff/xx7du3Tx988IGF6QAAVgvoI7GsrCwVFRUpPDy82Prw8HD99NNPFqUCAASKgC6xiwzDKLbsdrtLrAMA/PEEdIk1aNBAQUFBJY66Tp8+XeLoDADwxxPQJRYcHKzo6Ght2bKl2PotW7aoW7duFqUCAASK6lYHqMiDDz6o0aNHq0uXLurWrZuWLl2qjIwM3XvvvVZHAwBYLKCPxCRp8ODBSkhI0Jw5c9SzZ0/t3LlTycnJatq0qdXRfrft27frzjvvVNu2bRUWFqYVK1ZYHcnr5s2bpxtvvFGRkZGKiorS8OHDtW/fPqtjedW//vUvXXvttYqMjFRkZKRuueUWbdiwwepYPvPSSy8pLCxMEydOtDqK1yQkJCgsLKzYn1atWlkdy+syMjI0ZswYRUVFKSIiQt26ddO2bdusjuUVAX8kJkkjR47UyJEjrY7hNU6nU+3atVNcXJzGjBljdRyf2LZtm+6//3795S9/kdvt1gsvvKCBAwfq888/V7169ayO5xWNGjXSc889p6ioKLlcLq1atUojRozQ1q1b9ec//9nqeF61a9cuJSUlqX379lZH8TqHw6F169Z5loOCgixM4325ubm69dZb1b17dyUnJ6tBgwY6cuRIlbmvwBYlVtXExsYqNjZWkhQfH29xGt9ISUkptrx48WI1bdpUO3fu1O23325RKu/q27dvseVnnnlGr7/+unbt2lWlSuzMmTMaNWqUFixYoBdffNHqOF5XvXp1RUREWB3DZ+bPn68rrrhCixcv9qxr3ry5dYG8LOBPJ6JqyMvLk8vlUlhYmNVRfKKoqEhr166V0+lU165drY7jVRMmTNCAAQN0/fXXWx3FJ9LT09W2bVt17NhR9913n9LT062O5FXvv/++unTponvvvVctW7bUddddp9dee01ud8A+56JSOBKDX0yePFkdOnSocr/gv/vuO8XGxio/P18hISFavnx5lTrllpSUpEOHDhX7V3xVEhMTo4ULF8rhcOj06dOaM2eOYmNjtXPnTtWvX9/qeF6Rnp6u119/XfHx8ZowYYL27t2rSZMmSZIeeOABi9NdOkoMPvfkk09q586dWr9+fZW73uBwOPTpp5/qzJkzSk1N1dixY7Vu3Tq1a9fO6miXLC0tTdOnT9eHH36o4OBgq+P4xC233FJsOSYmRtHR0Vq5cqXGjRtnUSrvcrlc6ty5s6ZNmyZJ6tSpkw4dOqQlS5ZQYkBFpkyZopSUFL333ntV6jz8RcHBwbrqqqskSZ07d9ZXX32lhQsX6tVXX7U42aX74osvlJWVpWuuucazrqioSDt27NDSpUt14sQJ1axZ08KE3hcaGqo2bdro0KFDVkfxmoiICLVu3brYulatWun48eMWJfIuSgw+M2nSJKWkpGjdunVV8rbl0rhcLhUWFlodwyv69u2rzp07F1v34IMPKioqSo8++miVPDrLz89XWlqaevbsaXUUr+nevbsOHjxYbN3BgwcVGRlpUSLvosQskJeX5/mXnsvl0vHjx7Vnzx7Vq1evyryxHn/8ca1evVrLly9XWFiYMjMzJUkhISEKDQ21OJ13PPvss4qNjVXjxo2Vl5enNWvWaNu2bUpOTrY6mldc/NzUr9WpU0f16tWrEqdLJenpp5/WbbfdpiZNmniuiZ07d05xcXFWR/Oa+Ph4xcbGau7cuRo8eLD27Nmj1157Tc8884zV0bwioL+Kpar69NNP1a9fvxLr4+LitGjRIgsSeV9ZdyFOmjRJU6ZM8XMa3xg7dqw+/fRT/fTTT7rsssvUvn17jR8/XjfddJPV0Xymb9++ateunebMmWN1FK+47777tGPHDmVlZalhw4aKiYnRU089pTZt2lgdzas2bNig6dOn6+DBg2rSpIlGjRql0aNHV4kHqVNiAADb4nNiAADbosQAALZFiQEAbIsSAwDYFiUGALAtSgwAYFuUGGCBFStWlPgyxot/tm7danU8wDZ4YgdgoaSkJDVq1KjYut8+5w5A2SgxwEIdOnTwPEAYQOVxOhEIMJs3b9awYcPUunVrXXnllbrmmmu0YMECFRUVldg2KSlJvXr10hVXXKFmzZqpT58++vzzzz3j586d07Rp09SxY0eFh4erY8eOmjt3rlwulz93CfAZjsQACxUVFenChQueZcMwlJ6erl69eumBBx5QzZo1tXv3bs2ePVtZWVl69tlnPds+/fTTevXVV/W3v/1NU6ZMUbVq1bRr1y4dP35c3bp104ULFzRkyBDt379fEydOVPv27bVr1y7NmTNHOTk5mjlzpgV7DHgXJQZY6Oqrry623L17d61fv96z7Ha7de2116qwsFALFizQ1KlTVa1aNR06dEgLFy5UfHy8XnjhBc/2t956q+e/16xZo88++0zvv/++evToIUm6/vrrJUmzZ8/WhAkTFB4e7svdA3yOEgMstHz5cjVu3NizHBoaqoyMDM2aNUubNm1SRkZGsSO1U6dOKSIiQlu3bpXL5dLf//73Ml/7o48+UmRkpOeo7KLevXtrxowZ2rVrl/r06eOT/QL8hRIDLNSuXbtiN3a4XC7ddNNNysjI0OTJk+VwOFS7dm29//77mjt3rvLz8yVJ2dnZkrTaagUAAAGeSURBVFTizsZfO3XqlI4dO6aGDRuWOn7xNQA7o8SAAHL48GF9/fXXWrx4sYYPH+5Z/+GHHxbbrkGDBpKkkydPyuFwlPpa9evXV7NmzfTGG2+UOt60aVPvhAYsRIkBAeTcuXOSpBo1anjW/d///Z/eeuutYtvdcMMNqlatmt54440yb9C46aablJqaqpCQELVq1cp3oQELUWJAAGndurUiIyP1/PPPKygoSNWrV9fChQtLbNeiRQvFx8crMTFReXl5uv322xUUFKQvv/xSrVq10uDBg3XHHXdoxYoVGjBggB588EF16NBBhYWFOnz4sD788EOtWLFCderUsWAvAe+hxIAAEhwcrBUrVuiJJ57QmDFjVK9ePY0YMUKRkZEaP358sW1nzJihq666SkuWLNGqVatUp04dtW/fXr1795b0y9FcSkqKXn75ZSUlJenIkSOqU6eOWrRoodjYWAUHB1uxi4BXGbm5uW6rQwAA8HvwxA4AgG1RYgAA26LEAAC2RYkBAGyLEgMA2BYlBgCwLUoMAGBblBgAwLYoMQCAbf0/YpMzqoSYiNUAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"empirical_hist_die(100)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEcCAYAAAC4WdEMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de1RU9eI28GcEbzDaINJ4AzMYEQxEIbUIs9tYelBDDcFaHk1FqdRKE0orzRpNsjcROHjMwgITlcrQbFlpKUb5M0zKVAwBSSEFoWZMEGbeP1rOaeI2wN6zZ9jPZy3Wat+fL8vF057ZF0VVVZUJREREMtFJ6gBERES2xOIjIiJZYfEREZGssPiIiEhWWHxERCQrLD4iIpIVFh8REckKi4+IiGSFxeeACgoKpI4gOo6xY+AYO4aONkYWHxERyQqLj4iIZIXFR0REssLiIyIiWWHxERGRrLD4iIhIVlh8REQkKyw+IiKSFWepA5BjKL90BZev/G6z4+kNtfjpTLHNjgcAvd16Qu3hZtNjEpHtsfjIKpev/I5VG9JtdjyDwQBXV1ebHQ8AXlw4g8VHJAP8qJOIiGSFxUdERLIiafHl5ORg+vTp8PPzg0qlQnq65UdpKpWq0Z8lS5Y0uc9Dhw41us2ZM2fEHg4RETkASb/jMxgM8Pf3R1RUFObPn99g+enTpy2m8/LyMH36dEyePLnFfefm5sLN7X/f1/Tu3bv9gYmIyOFJWnxarRZarRYAEBsb22C5Wq22mN67dy98fHxw1113tbhvDw8PuLu7CxOUiIg6DIf5jk+v1yMrKwszZ860av2xY8fC19cXEydOxNdffy1yOiIichQOczvDzp07UVNTg6ioqGbX69OnD9avX48RI0agtrYW27dvx6RJk5CdnY3Q0FAbpSUiInvlMMWXlpaGCRMmtPhdnUajgUajMU+PHDkSJSUlSExMbLb4HO0Nw7bOqzfUwmAw2PSYtj6e3qC3+e/V0f7dtQXH2DE42hj/3gP/5BDFd+LECeTl5eHFF19s0/bBwcHIyspqdp3mfkktsf1TTfRQuiptdjwA6NwZNr2hXIob2JWuSmg0A212vIKCgnb9u3MEHGPH0NHG6BDFl5aWBi8vL4wdO7ZN2+fn5ze4UEZIcniqyeLZD9v0eEREYpG0+PR6PQoLCwEARqMRpaWlOHHiBNzc3ODp6QkAuHr1Knbs2IGFCxdCoVA02EdMTAwAIDU1FQCQnJwMLy8v+Pn5oba2FpmZmdizZw+2bt1qo1ERkZT4XFlqiaTFl5eXh/DwcPO0TqeDTqdDVFQUUlJSAABZWVkwGAyYMWNGo/soLS21mL5+/TpWrFiBixcvolu3bvDz80NmZqb5tgki6tjk8AkMnyvbPpIWX1hYGKqqqppd59FHH8Wjjz7a5PI9e/ZYTC9atAiLFi0SJB8REXU8DnMfHxERkRBYfEREJCssPiIikhUWHxERyQqLj4iIZIXFR0REssLiIyIiWWHxERGRrLD4iIhIVlh8REQkKyw+IiKSFYd4LREREf2PQgGbvhGio72BgsVHRORgqv+4iv+35UObHa+jvYGCxUckI3J4V11Nba1Nj0eOh8VHJCNyeFfd4tkP2/R45Hh4cQsREckKi4+IiGSFxUdERLLC4iMiIllh8RERkaw4XPHl5ORg+vTp8PPzg0qlQnq65RVqCxYsgEqlsvi5//77JUpLRET2xuFuZzAYDPD390dUVBTmz5/f6Dpjx45FamqqebpLly62ikdERHbO4YpPq9VCq9UCAGJjYxtdp2vXrlCr1baMRR2AHB4DxZu7iRyw+KzxzTffwMfHBzfddBNCQ0OxYsUKeHh4SB2L7JwcHgPFm7uJWlF8OTk58PX1Re/evRtdXlFRgVOnTiE0NFSwcG1x//33Izw8HAMHDkRJSQlWr16NiRMn4uDBg+jatWuT2xUUFLT5mHpDLQwGQ5u3bwtbH6+uvo5jFAHHKDyOURy2Pp7eoG/X32WNRtPkMquLLzw8HKmpqZg2bVqjy7/66ivMmTMHlZWVrU8ooClTppj/e+jQoQgKCkJAQAA+++wzTJw4scntmvslteSnM8U2/T93Kc4UnJ2cOUaBcYzi4BiFJ8UYla5KaDQDRdm31Vd1mkymZpfX1taiUyf7u0i0b9++6NevHwoLC6WOQkREdqDZM77ff/8d1dXV5unKykqcP3++wXpVVVXYtWsX+vbtK3zCdqqoqMDFixd5sQsREQFoofiSk5Px+uuvAwAUCgXi4+MRHx/f6LomkwkrVqwQPuE/6PV689mb0WhEaWkpTpw4ATc3N7i5uWHNmjWYOHEi1Go1SkpKsGrVKnh4eOBf//qX6NmIiMj+NVt8Y8eORbdu3WAymbBq1SpEREQgICDAYh2FQgEXFxcMHz4cISEhooYFgLy8PISHh5undToddDodoqKisH79epw8eRIffPABqquroVarERYWhnfeeQc9evQQPRsREdm/Zotv9OjRGD16NACgpqYG4eHhGDp0qE2CNSUsLAxVVVVNLs/KyrJhGiIicjRWX9UZFxcnZg4iIiKbaLL4tm3bBgCYPn06FAqFebolUVFRwiQjIiISQZPFFxsbC4VCgSlTpqBLly5NPh7s7xQKBYuPiIjsWpPF98MPPwD43wOeb0wTERE5siaLz8vLq9lpIiIiR2R/j1ohIiISUaveznDw4EGkpaWhqKgIV65cafAYM4VCgePHjwsakIiISEhWF19KSgpeeOEF9O7dGyEhIfDz8xMzFxERkSisLr6kpCSEhoZi165dfKM5ERE5LKu/46uoqEBERARLj4iIHJrVxRcUFISSkhIxsxAREYnO6uJ79dVXkZGRga+//lrMPERERKKy+js+nU6Hnj17YvLkyfD29oanpyecnJws1lEoFMjMzBQ8JBERkVCsLr5Tp05BoVBgwIABqKmpwdmzZxuso1AoBA1HREQkNKuLLz8/X8wcRERENsEntxARkaxYfcZ3/vx5q9bz9PRscxgiIiKxWV18gYGBVn2HV1lZ2a5AREREYrK6+DZu3Nig+Orr61FcXIwPPvgAN998M+bMmSN4QCIiIiFZXXwzZsxoctnixYtx7733Qq/Xt+rgOTk5SExMxA8//ICLFy8iKSnJfJzr169j9erV2L9/P4qKitCjRw+EhYXhpZdeavbj1EOHDiE8PLzB/O+++w6DBw9uVT4iIup4BLm4RalUYsaMGUhOTm7VdgaDAf7+/lizZg26d+9usezq1av44YcfsGTJEnz11VfIyMjAr7/+iqlTp6Kurq7Ffefm5uL06dPmH29v71ZlIyKijqlVryVqTufOnXHx4sVWbaPVaqHVagEAsbGxFstuuukmfPTRRxbz3nzzTYwePRqnT5/G0KFDm923h4cH3N3dW5WHiIg6PkHO+PLz8/Gf//wHvr6+QuyuSX/88QcAQKVStbju2LFj4evri4kTJ/Ixa0REZNbuqzqrq6vx+++/Q6lUIikpSdBwf1dbW4vly5fjwQcfRP/+/Ztcr0+fPli/fj1GjBiB2tpabN++HZMmTUJ2djZCQ0NFy0dERI7B6uILDQ1tUHwKhQIqlQq33norpkyZYtWZWFvU1dVh3rx5qK6uxrZt25pdV6PRQKPRmKdHjhyJkpISJCYmNlt8BQUFbc6nN9TCYDC0efu2sPXx6urrOEYRcIzC4xjFYevj6Q36dv1d/nsP/FOr3sAuhbq6Ojz++OM4efIksrOz0atXr1bvIzg4GFlZWc2u09wvqSU/nSmGq6trm7dvLYPBYNPjAYCzkzPHKDCOURwco/CkGKPSVQmNZqAo+xbs4hYxXL9+HbNnz8bPP/+M7OxsqNXqNu0nPz+/zdsSEVHHImnx6fV6FBYWAgCMRiNKS0tx4sQJuLm5oW/fvpg5cyby8vKwbds2KBQKlJeXAwB69uxpvv0hJiYGAJCamgoASE5OhpeXF/z8/FBbW4vMzEzs2bMHW7dulWCERERkbyQtvry8PIubzXU6HXQ6HaKiohAXF4e9e/cC+OsKzb/7+43upaWlFsuuX7+OFStW4OLFi+jWrRv8/PyQmZlpvm2CiIjkTdLiCwsLQ1VVVZPLm1t2w549eyymFy1ahEWLFrU7GxERdUx8LREREcmKVcV37do1rF27Fl9++aXYeYiIiERlVfF169YNb775ZoPv04iIiByN1R91BgQEmK/AJCIiclRWF9+LL76IrVu34rPPPhMzDxERkaisvqpzw4YNUKlUiIqKQr9+/XDLLbc0eJWQQqFAZmam4CGJiIiEYnXxnTp1CgqFAgMGDAAAlJSUNFinsYdYExER2ROriy8/P1/MHERERDbB+/iIiEhWWlV89fX1yMzMxJNPPonIyEj8+OOPAP56wsqHH36IsrIyUUISEREJxeriq66uhlarRUxMDD7++GPs378fFRUVAIAePXrghRdewKZNm0QLSkREJASri2/lypU4deoUduzYgePHj8NkMpmXOTk5ITw8HPv37xclJBERkVCsLr49e/Zg3rx5uP/++xu9etPb2xvnz58XNBwREZHQrC6+qqoqDBo0qMnlJpMJtbW1goQiIiISi9XF5+XlhZMnTza5PCcnBz4+PoKEIiIiEovVxTdt2jRs3boVOTk55nk3PvJMTU1FdnY2oqOjhU9IREQkIKtvYH/66afxf//3f5g4cSJ8fHygUCgQFxeHyspKlJeXY8KECYiJiREzKxERUbtZXXydO3dGZmYmduzYgY8++ggKhQJ1dXUYNmwYIiIi8Mgjj/CRZUREZPesLr4bpk2bhmnTpomRhYiISHStLj4A+PHHH823Lnh6emLo0KE82yMiIofQqkeW7dq1C7fddhvGjBmD6OhoREdHY8yYMQgICMCOHTvEymghJycH06dPh5+fH1QqFdLT0y2Wm0wm6HQ6DBkyBH369MGECRPw888/2yQbERHZP6uLLz09HXPmzIGLiwtWrlyJjIwMpKenY+XKlejevTtiYmIalJAYDAYD/P39sWbNmgbvAwSAt956C0lJSVi7di2+/PJLeHh44OGHH8Yff/whejYiIrJ/Vn/UuX79egQHByM7OxvdunWzWDZ37lyMHz8e69evx4wZMwQP+XdarRZarRYAEBsba7HMZDIhJSUFixcvxqRJkwAAKSkp0Gg02LlzJ2bNmiVqNiIisn9Wn/H9+uuvmDZtWoPSA4Bu3bohMjISFy5cEDRcaxUXF6O8vBz33nuveV737t1x55134ttvv5UwGRER2Qurz/iGDBmCixcvNrn8woUL8PX1FSRUW5WXlwMAPDw8LOZ7eHg0mx0ACgoK2nxcvaEWBoOhzdu3ha2PV1dfxzGKgGMUHscoDlsfT2/Qt+vvskajaXKZ1cW3atUqzJw5E8OGDcPDDz9ssWzXrl3YunUrtm7d2uaQQvrnFaYmk6nFq06b+yW15KczxXB1dW3z9q1lMBhsejwAcHZy5hgFxjGKg2MUnhRjVLoqodEMFGXfVhdfYmIi3N3d8fjjjyMuLg6DBg2CQqFAYWEhLl26BG9vb2zYsAEbNmwwb6NQKJCZmSlK8Mao1WoAwG+//YYBAwaY51++fLnBWSAREcmT1cV36tQpKBQKc6Hc+D6va9euGDBgAGpqanD69GmLbWx9b9/AgQOhVqtx4MABjBgxAgBw7do1fPPNN1i1apVNsxARkX2yuvjy8/PFzGE1vV6PwsJCAIDRaERpaSlOnDgBNzc3eHp6YsGCBXjjjTeg0Wjg4+ODhIQEuLq6YurUqRInJyIie9CmJ7dIKS8vD+Hh4eZpnU4HnU6HqKgopKSkYNGiRfjzzz+xdOlSVFVVITg4GFlZWejRo4eEqYmIyF44XPGFhYWhqqqqyeUKhQLx8fGIj4+3YSoiInIUrXpkGRERkaNj8RERkayw+IiISFZYfEREJCtWF9+wYcOwd+/eJpfv27cPw4YNEyQUERGRWKwuvpKSkmaf1WYwGMwvpyUiIrJXrfqos7knsZw9e5b3yhERkd1r9j6+jIwMbNu2zTydkJCAtLS0ButVVVXh5MmTGDdunPAJiYiIBNRs8RkMBvOrfgCguroaRqPRYh2FQgEXFxfMnDkTcXFx4qQkIiISSLPFN3fuXMydOxcAEBgYiDVr1mD8+PE2CUZERCQGqx9ZduLECTFzEBER2USrn9X5xx9/oLS0FFeuXIHJZGqwPDQ0VJBgREREYrC6+K5cuYJly5bhww8/RH19fYPlN95yXllZKWhAIiIiIVldfE8//TSys7Mxd+5chIaGQqVSiZmLiIhIFFYX3+eff46YmBi8+uqrYuYhIiISldU3sHfp0gXe3t5iZiEiIhKd1cU3adIk7N+/X8wsREREorO6+J566imUlZVh/vz5OHr0KMrKynDp0qUGP0RERPbM6u/4goODoVAocPz4cWRmZja5Hq/qJCIie2Z18T333HPNPqRaDAEBAY2+8UGr1TZavsXFxY2+Gmnnzp24//77RclIRESOxerii4+PFzNHow4cOGBxz2BZWRnGjh2LyZMnN7vdrl27cNttt5mn3dzcRMtIRESOpdVPbgGA+vp6VFdXo2fPnnB2btMurNK7d2+L6ffeew89evRosfh69eoFtVotWi4iInJcrXof3/fff4/JkyejX79+8PHxQU5ODgCgoqICjzzyCL766itRQgJ/PRnmvffeQ2RkJFxcXJpd97HHHoOPjw/GjRuHjz/+WLRMRETkeKwuvu+++w7jx4/HuXPnMH36dIvndLq7u0Ov1+O9994TJSTw18eexcXFeOyxx5pcR6lU4pVXXsE777yDHTt2YMyYMZg1axa2b98uWi4iInIsVn9O+corr8Db2xtffPEFDAYDtm7darE8LCxM1IJJS0vDiBEjEBgY2OQ67u7ueOqpp8zTw4cPR2VlJd566y1ERkY2u/+CgoI2Z9MbamEwGNq8fVvY+nh19XUcowg4RuFxjOKw9fH0Bn27/i5rNJoml1ldfN9//z2WL1+Obt264erVqw2W9+/f3+KltUK6dOkS9u7di4SEhFZvGxwcjPT09BbXa+6X1JKfzhTD1dW1zdu3lsFgsOnxAMDZyZljFBjHKA6OUXhSjFHpqoRGM1CUfVv9UWenTp3QqVPTq5eXl6N79+6ChPqnjIwMdO3aFREREa3eNj8/nxe6EBGRmdXFFxQUhH379jW6rLa2Fjt27MDIkSMFC3aDyWTC1q1bERERgR49elgsW7lyJSZOnGiezsjIwI4dO3D69GkUFBQgMTERmzdvxrx58wTPRUREjsnqjzqfeeYZTJ06FU8++SSmTZsG4K/76j7//HMkJCTg3LlzSEpKEjzgoUOH8Msvv2DTpk0NlpWVleHcuXMW8xISEnD+/Hk4OTnB29sbGzdubPH7PSIikg+ri++ee+5Bamoqli5dioyMDADAggULYDKZcNNNN2Hz5s24/fbbBQ84ZswYVFVVNbosJSXFYjo6OhrR0dGCZyAioo6jVXefT506FePHj8eBAwfwyy+/wGg0YtCgQbjvvvugVCrFykhERCSYVj92xcXFBRMmTBAjCxERkeisvrhl7969WLp0aZPLly5d2uTFL0RERPbC6uJLTExs9P69G65du4a33npLkFBERERisbr4Tp48iaCgoCaXDxs2DKdOnRIkFBERkVisLr66ujr8+eefTS7/888/UVNTI0goIiIisVhdfP7+/ti9ezeMRmODZUajEbt378aQIUMEDUdERCQ0q4tv/vz5OHbsGKKionD8+HHU1NSgpqYGx48fR3R0NI4dO4aYmBgxsxIREbWb1bczTJkyBefOnYNOp8P+/fsBAAqFAiaTCQqFAsuWLeMTUoiIyO616j6+JUuWYOrUqfjkk09QVFQEk8mEQYMGITw8HLfccotIEYmIiIRjVfH9+eefeOSRRxAZGYlHH33U4p13REREjsSq7/i6d++OH374AfX19WLnISIiEpXVF7fcddddOHLkiJhZiIiIRGd18a1duxbff/89VqxYgaKiokZvayAiIrJ3Vl/ccvvtt8NkMiEpKQlJSUno1KkTOnfubLGOQqHAhQsXBA9JREQkFKuL7+GHH4ZCoRAzCxERkeisLr5/vvSViIjIEVn9HR8REVFH0KriKykpwcKFCxEUFARPT08cPnwYAFBRUYFnn30Wx48fFyUkERGRUKz+qPP06dN48MEHYTQaERISgpKSEvN9fe7u7jh69ChqamqwceNG0cISERG1l9VnfC+99BJ69OiBo0ePYtOmTTCZTBbLtVotcnNzBQ/YFjqdDiqVyuJn8ODBUsciIiI7YPUZ35EjR7BkyRLcfPPNqKysbLDc09MTFy9eFDRce2g0GmRnZ5unnZycJExDRET2wuriq6urg6ura5PLr1y5Ylfl4uzsDLVaLXUMIiKyM616Ee2hQ4caXWYymfDJJ58gKChIsGDtVVRUBD8/PwQGBmL27NkoKiqSOhIREdkBq8/4FixYgDlz5uD1119HREQEgL/evH7mzBnodDrk5eVh+/btogVtjZCQECQnJ0Oj0eDy5ctYt26d+TvIXr16NbpNQUFBm4+nN9TCYDC0efu2sPXx6urrOEYRcIzC4xjFYevj6Q36dv1d1mg0TS5r1Ytoz58/j1dffRVr1qwxzwP++v5s9erVeOCBB9ocUkj/zBESEoKgoCBkZGTgySefbHSb5n5JLfnpTHGzHwMLzWAw2PR4AODs5MwxCoxjFAfHKDwpxqh0VUKjGSjKvlv1ItrFixdj6tSp2L17NwoLC2E0GjFo0CBMnDgRAweKE1AISqUSQ4YMQWFhodRRiIhIYi0WX01NDfbu3YuioiL06tUL48aNQ2xsrC2yCebatWsoKChAWFiY1FGIiEhizRZfeXk5xo8fj3Pnzpnv23N1dcX27dsRGhpqk4BtsXz5cjz44IMYMGCA+Tu+q1evIioqSupoREQksWaLb/Xq1SgqKkJsbCzGjBmDwsJCrFu3Ds899xxycnJslbHVLly4gDlz5qCiogK9e/dGSEgI9u/fDy8vL6mjERGRxJotvi+//BJRUVFYvXq1ed7NN9+MOXPm4Ndff0X//v1FD9gWW7ZskToCERHZqWbv4ysvL8eoUaMs5o0ePRomkwmlpaWiBiMiIhJDs8VXX1+Pbt26Wcy7MX3t2jXxUhEREYmkxas6i4qKcOzYMfP077//DuCvG76VSmWD9YODgwWMR0REJKwWi0+n00Gn0zWY/9xzz1lMm0wmKBSKRh9gTUREZC+aLb6kpCRb5SAiIrKJZosvOjraVjmIiIhswuq3MxAREXUELD4iIpIVFh8REckKi4+IiGSFxUdERLLC4iMiIllh8RERkayw+IiISFZYfEREJCssPiIikhUWHxERyQqLj4iIZIXFR0REsmLXxbd+/Xrcc8898PT0hLe3NyIjI3Hy5MlmtykuLoZKpWrw8/nnn9soNRER2bMWX0QrpcOHD+Pxxx/HiBEjYDKZ8Nprr2Hy5Mn49ttv4ebm1uy2u3btwm233Waebml9IiKSB7suvqysLIvp1NRUeHl5ITc3Fw899FCz2/bq1QtqtVrMeERE5IDs+qPOf9Lr9TAajVCpVC2u+9hjj8HHxwfjxo3Dxx9/bIN0RETkCOz6jO+f4uLiEBAQgJEjRza5jlKpxCuvvILRo0fD2dkZe/fuxaxZs5CSkoLIyEgbpiUiInvkMMX3/PPPIzc3F/v27YOTk1OT67m7u+Opp54yTw8fPhyVlZV46623mi2+goKCNmfTG2phMBjavH1b2Pp4dfV1HKMIOEbhcYzisPXx9AZ9u/4uazSaJpc5RPHFx8cjKysLn3zyCW655ZZWbx8cHIz09PRm12nul9SSn84Uw9XVtc3bt5bBYLDp8QDA2cmZYxQYxygOjlF4UoxR6aqERjNQlH3bffEtW7YMWVlZyM7OxuDBg9u0j/z8fF7oQkREAOy8+JYsWYLt27fj/fffh0qlQnl5OQDA1dUVSqUSALBy5UocO3YMu3fvBgBkZGSgc+fOCAwMRKdOnbBv3z5s3rwZL7/8slTDICIiO2LXxbd582YAwKRJkyzmL1u2DPHx8QCAsrIynDt3zmJ5QkICzp8/DycnJ3h7e2Pjxo28sIWIiADYefFVVVW1uE5KSorFdHR0NKKjo8WKREREDs6h7uMjIiJqLxYfERHJCouPiIhkhcVHRESywuIjIiJZYfEREZGssPiIiEhWWHxERCQrLD4iIpIVFh8REckKi4+IiGSFxUdERLLC4iMiIllh8RERkayw+IiISFZYfEREJCssPiIikhUWHxERyQqLj4iIZIXFR0REstJhi2/z5s0IDAyEWq3G3XffjSNHjkgdiYiI7ECHLL6srCzExcXh2Wefxddff42RI0di2rRpOH/+vNTRiIhIYh2y+JKSkhAdHY2ZM2fC19cX69atg1qtxpYtW6SORkREElNUVVWZpA4hpNraWvTt2xdvv/02Jk+ebJ6/ZMkSnDx5Env37pUwHRERSa3DnfFVVFSgvr4eHh4eFvM9PDzw22+/SZSKiIjsRYcrvhsUCoXFtMlkajCPiIjkp8MVn7u7O5ycnBqc3V2+fLnBWSAREclPhyu+Ll26ICgoCAcOHLCYf+DAAYwaNUqiVEREZC+cpQ4ghieeeAIxMTEIDg7GqFGjsGXLFpSVlWHWrFlSRyMiIol1uDM+AIiIiIBOp8O6desQFhaG3NxcZGZmwsvLS+po7ZKTk4Pp06fDz88PKpUK6enpUkcS1Pr163HPPffA09MT3t7eiIyMxMmTJ6WOJaj//ve/uPPOO+Hp6QlPT0888MAD+Oyzz6SOJZo33ngDKpUKS5culTqKoHQ6HVQqlcXP4MGDpY4luLKyMsyfPx/e3t5Qq9UYNWoUDh8+LHWsduuQZ3wAMGfOHMyZM0fqGIIyGAzw9/dHVFQU5s+fL3UcwR0+fBiPP/44RowYAZPJhNdeew2TJ0/Gt99+Czc3N6njCaJfv35YuXIlvL29YTQasW3bNsyYMQMHDx7EbbfdJnU8QR09ehRpaWkYOnSo1FFEodFokJ2dbZ52cnKSMI3wqqqqMG7cOIwePRqZmZlwd3dHcXFxh7hWorGXiGoAAAdOSURBVMMWX0ek1Wqh1WoBALGxsRKnEV5WVpbFdGpqKry8vJCbm4uHHnpIolTCmjBhgsX0ihUr8Pbbb+Po0aMdqviqq6sxd+5cJCYm4vXXX5c6jiicnZ2hVquljiGaDRs2oE+fPkhNTTXPu+WWW6QLJKAO+VEndQx6vR5GoxEqlUrqKKKor6/Hrl27YDAYMHLkSKnjCGrx4sWYNGkS7r77bqmjiKaoqAh+fn4IDAzE7NmzUVRUJHUkQe3ZswfBwcGYNWsWfHx8cNddd2HTpk0wmRz/mSc84yO7FRcXh4CAgA5XCj/99BO0Wi2uXbsGV1dXvP/++x3q48C0tDQUFhZanCl0NCEhIUhOToZGo8Hly5exbt06aLVa5ObmolevXlLHE0RRURHefvttxMbGYvHixcjPz8eyZcsAAPPmzZM4Xfuw+MguPf/888jNzcW+ffs63HcnGo0Ghw4dQnV1NXbv3o0FCxYgOzsb/v7+Ukdrt4KCAqxatQqffvopunTpInUc0TzwwAMW0yEhIQgKCkJGRgaefPJJiVIJy2g0Yvjw4XjppZcAAMOGDUNhYSE2b97M4iMSWnx8PLKysvDJJ590mO8U/q5Lly649dZbAQDDhw/H999/j+TkZGzcuFHiZO333XffoaKiAnfccYd5Xn19PY4cOYItW7bgwoUL6Nq1q4QJxaFUKjFkyBAUFhZKHUUwarUavr6+FvMGDx6M0tJSiRIJh8VHdmXZsmXIyspCdnZ2h7w8vDFGoxG1tbVSxxDEhAkTMHz4cIt5TzzxBLy9vfHMM8902LPAa9euoaCgAGFhYVJHEczo0aNx9uxZi3lnz56Fp6enRImEw+JzIHq93vx/lEajEaWlpThx4gTc3Nw6xD/GJUuWYPv27Xj//fehUqlQXl4OAHB1dYVSqZQ4nTBefvllaLVa9O/fH3q9Hjt37sThw4eRmZkpdTRB3Lin7e9cXFzg5ubWIT7KvWH58uV48MEHMWDAAPN3fFevXkVUVJTU0QQTGxsLrVaLhIQERERE4MSJE9i0aRNWrFghdbR263CvJerIDh06hPDw8Abzo6KikJKSIkEiYTV19eayZcsQHx9v4zTiWLBgAQ4dOoTffvsNPXv2xNChQ7Fw4ULcd999UkcTzYQJE+Dv749169ZJHUUws2fPxpEjR1BRUYHevXsjJCQEL7zwAoYMGSJ1NEF99tlnWLVqFc6ePYsBAwZg7ty5iImJcfgH/rP4iIhIVngfHxERyQqLj4iIZIXFR0REssLiIyIiWWHxERGRrLD4iIhIVlh8RA4iPT29wctPb/wcPHhQ6nhEDoNPbiFyMGlpaejXr5/FvH8+U5GImsbiI3IwAQEB5odcE1Hr8aNOog7gyy+/xLRp0+Dr64u+ffvijjvuQGJiIurr6xusm5aWhjFjxqBPnz4YOHAgxo8fj2+//da8/OrVq3jppZcQGBgIDw8PBAYGIiEhAUaj0ZZDIhINz/iIHEx9fT3q6urM0wqFAkVFRRgzZgzmzZuHrl274vjx41i7di0qKirw8ssvm9ddvnw5Nm7ciMceewzx8fHo1KkTjh49itLSUowaNQp1dXWYMmUKTp06haVLl2Lo0KE4evQo1q1bhytXruDVV1+VYMREwmLxETmY22+/3WJ69OjR2Ldvn3naZDLhzjvvRG1tLRITE/Hiiy+iU6dOKCwsRHJyMmJjY/Haa6+Z1x83bpz5v3fu3IlvvvkGe/bsQWhoKADg7rvvBgCsXbsWixcvhoeHh5jDIxIdi4/Iwbz//vvo37+/eVqpVKKsrAxr1qzB559/jrKyMoszwkuXLkGtVuPgwYMwGo3497//3eS+v/jiC3h6eprP/m649957sXr1ahw9ehTjx48XZVxEtsLiI3Iw/v7+Fhe3GI1G3HfffSgrK0NcXBw0Gg26d++OPXv2ICEhAdeuXQMAVFZWAkCDK0L/7tKlSzh//jx69+7d6PIb+yByZCw+Igd37tw55OXlITU1FZGRkeb5n376qcV67u7uAICLFy9Co9E0uq9evXph4MCBePfddxtd7uXlJUxoIgmx+Igc3NWrVwEAnTt3Ns+7fv06duzYYbHe2LFj0alTJ7z77rtNXqRy3333Yffu3XB1dcXgwYPFC00kIRYfkYPz9fWFp6cnXnnlFTg5OcHZ2RnJyckN1hs0aBBiY2ORlJQEvV6Phx56CE5OTjh27BgGDx6MiIgIPPLII0hPT8ekSZPwxBNPICAgALW1tTh37hw+/fRTpKenw8XFRYJREgmHxUfk4Lp06YL09HQ899xzmD9/Ptzc3DBjxgx4enpi4cKFFuuuXr0at956KzZv3oxt27bBxcUFQ4cOxb333gvgr7PGrKwsvPnmm0hLS0NxcTFcXFwwaNAgaLVadOnSRYohEglKUVVVZZI6BBERka3wyS1ERCQrLD4iIpIVFh8REckKi4+IiGSFxUdERLLC4iMiIllh8RERkayw+IiISFZYfEREJCv/H62N/1aPHFD5AAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"empirical_hist_die(1000)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As we increase the number of rolls in the simulation, the area of each bar gets closer to 16.67%, which is the area of each bar in the probability histogram.\n",
"\n",
"## The Law of Averages\n",
"\n",
"What we have observed above is an instance of a general rule called the *law of averages*:\n",
"\n",
"If a chance experiment is repeated independently and under identical conditions, then, in the long run, the proportion of times that an event occurs gets closer and closer to the theoretical probability of the event.\n",
"\n",
"For example, in the long run, the proportion of times the face with four spots appears gets closer and closer to 1/6.\n",
"\n",
"Here \"independently and under identical conditions\" means that every repetition is performed in the same way regardless of the results of all the other repetitions.\n",
"\n",
"Under these conditions, the law above implies that if the chance experiment is repeated a large number of times then the proportion of times that an event occurs is very likely to be close to the theoretical probability of the event."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 1
}